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The proton and deuteron analyzing powers and ten of the possible 12 spin correlation coeffcients have 
been measured for p + d elastic scattering at proton bombarding energies of 135 and 200 MeV. The results 
are compared with Faddeev calculations using two different NN potentials. The qualitative features of the 
extensive data set on the spin dependence in p + d elastic scattering over a wide range of angles presented here 
are remarkably well explained by two-nucleon force predictions without inclusion of a three-nucleon force. The 
remaining discrepancies are, in general, not alleviated when theoretical three-nucleon forces are included in 
the calculations. 
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I. INTRODUCTION

During the last several years, proton-deuteron scattering 
has been studied in a number of experiments at intermediate-
energy facilities, including RIKEN [1–3], the KVI [4,5], and 
IUCF [6,7]. The declared purpose of all of these experiments 
was the search for evidence of a three-nucleon force. 

This considerable experimental activity was stimulated by 
the availability of parameter-free and computationally exact 
predictions of scattering observables in the three-nucleon 
system, derived from a given nucleon-nucleon (NN) potential. 
These “Faddeev” calculations, carried out mainly by the 
Bochum-Cracow group [8], are now available at intermediate 
energies, owing to advances in computing power that made 
the inclusion of a suffcient number of partial waves possible. 
However, pion production (above ∼200 MeV proton energy) 
is not included in these calculations. 

It is commonly argued that discrepancies between data and 
calculations are a manifestation of physics that is omitted in 
these calculations, and that the most obvious contender is 
the three-nucleon force (3NF). Bombarding energies above 
100 MeV are of interest because 3NF effects are expected to 
grow with increasing energy, and because the Coulomb inter-
action is of minor importance, making it feasible to compare 
the calculations (which are really for n + d scattering) to p + d 
scattering data. 

It is also possible to include model representations of the 
3NF in the Faddeev calculations. If this were to lead to a 

*E-mail address: przewoski@iucf.indiana.edu
†Deceased. 

systematic improvement of the agreement with the data, one 
would have uncovered evidence for a 3NF. 

Polarization observables contain sums of interfering pairs 
of amplitudes and are potentially more sensitive than the cross 
section to contributions from a small effect such as the 3NF. In 
order to test the present (and any future) models of a 3NF, it is 
crucial to have measured as many polarization observables as 
possible. The experiments cited above cover the cross section, 
the proton analyzing power, the four deuteron analyzing 
powers, and in one case [2], polarization transfer coeffcients. 
Only a single spin correlation coeffcient measurement (beam 
and target polarized) has been reported [7]. In this paper, 
we report the measurement of ten of the 12 possible spin 
correlation coeffcients, in addition to the fve analyzing 
powers. The measurement was carried out at 135 and 200 MeV 
proton bombarding energy, and used a polarized proton beam 
and a vector- and tensor-polarized deuteron target. 

The paper is organized as follows. In Sec. II we defne the 
measured observables and derive the spin-dependent scattering 
cross section. In Secs. III and IV we describe the equipment and 
the measurement. In Sec. V we explain how the observables 
were deduced from the data and present the results. In Sec. VI 
we describe the calculations and present models of the 3NF 
and compare them to the measurements. This is followed by 
our conclusions in Sec. VII. 

II. OBSERVABLES

A. Coordinate frames and definition of observables

The following discussion is limited to the tools that are 
needed to analyze the data of this experiment; details of 
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the polarization formalism and its foundation can be found, 
e.g., in Ohlsen’s discussion of spin correlation experiments 
involving particles with spin 1/2 and 1 [9]. For the treatment 
of spin-1 polarization, two different bases are in common use 
and various normalization conventions can be found in the 
literature. Here, we are using the Cartesian basis (as opposed 
to the spherical tensor basis) because it is more intuitive when 
dealing with spin correlation coeffcients. For normalization 
we follow the Madison Convention [10]. The production and 
description of polarized beams is also well explained in 
Ref. [11]. 

We defne as the “scattering frame” a Cartesian coordinate 
system (X, Y, Z) with the Z axis along the momentum of 
the incident proton,pinc , the  Y axis in the direction of pinc × 
pout where pout is the momentum of the scattered proton, and 
the X axis completing a right-handed coordinate frame. The 
differential cross section σ for elastic scattering of polarized 
protons from polarized deuterons, in units of the unpolarized 
differential cross section σ0, is given by Eq. 6.8 of Ref. [9] as  
follows: 

3 2σ/σ0 = 1 + QY A
p + PY A

d + PXZAxzy 2 y 3 

1+ (PXXAxx + PYY  Ayy + PZZAzz)3 
3+ (PXQXCx,x + PXQZCx,z + PY QY Cy,y 2 

+ PZQXCz,x + PZQZCz,z) 
1+ (PXXQY Cxx,y + PYY  QY Cyy,y + PZZQY Czz,y)3 
2+ (PXY QXCxy,x + PXY QZCxy,z + PXZQY Cxz,y 3 

+ PYZQXCyz,x + PYZQZCyz,z). (1) 

Using indices (I,K = X, Y, Z) the  QI are the components of 
the proton polarization in the scattering frame, the PI are the 
components of the deuteron vector polarization and the PIK  

are the Cartesian moments of the deuteron tensor polarization. 
The observables, defned by this equation, include the proton 

panalyzing power Ay , the deuteron vector analyzing powerAd ,y 
the tensor analyzing powers Aik , the vector spin correlation 
coeffcients Ci,k , and the tensor spin correlation coeffcients 
Cik,n. These observables are functions of the scattering angle θ . 
In the derivation of Eq. (1), the constraints of parity conserva-
tion have been taken into account. We note that the Cartesian 
basis is over-complete, and that the following three relations 
between the terms of Eq. (1) hold: 

PXX + PYY  + PZZ = Axx + Ayy + Azz 

= Cxx,y + Cyy,y + Czz,y = 0. (2) 

Defning A ≡ Axx − Ayy and C �,y ≡ Cxx,y − Cyy,y , we  
use the relations of Eq. (2) to eliminate Axx + Ayy and 
Cxx,y + Cyy,y . There are then 17 spin observables in all, 
namely the proton and deuteron vector analyzing power, three 
tensor analyzing powers, fve vector correlation coeffcients 
and seven tensor correlation coeffcients. 

The task of extracting spin observables from the data 
requires the measurement of the azimuthal dependence of the 
cross section, calling for a cylindrically symmetric detector. In 
such a detector, the azimuth ϕ of the scattering plane around 
the beam axis is a measured quantity that varies from event 
to event. To describe this, we defne a second Cartesian frame 

(x, y, z) that is fxed in space with the x axis pointing to the 
left, the y axis upwards and the z axis in the beam direction. 
The azimuth ϕ of the outgoing proton (i.e., the orientation of 
the scattering plane) is measured clockwise from the positive 
x-axis, looking in the beam direction. Thus, the scattering 
frame is obtained by rotating the fxed frame by ϕ around the 
z (or Z) axis. 

The polarization of the (spin-1/2) proton beam is specifed 
in the fxed frame by a three-component vector with magnitude � � 
Q and direction Q̂ = βQ,� Q , where βQ is the polar angle 
(with respect to the z axis) and Q is the azimuth. The polar-
ization components in the scattering frame are then given by 

QX = Q sin βQ cos( Q − ϕ), 

QY = Q sin βQ sin( Q − ϕ), (3) 

QZ = Q cos βQ. 

The description of the polarization of the deuteron target 
is more complicated. For an ensemble of spin-1 particles 
prepared by an atomic beam source there exists an axis of 
rotational symmetry Ŝ, called “spin alignment axis”. Let us 
denote by m+,m0 and m− the fractional populations of the 
three magnetic substates with projection +1, 0, and –1 with 
respect to a quantization axis in the direction of Ŝ. The vector 
polarization of the ensemble is then given by P  = m+ − m− 

and the tensor polarization by P   = 1 − 3m0. In order 
to characterize the polarization of the deuteron target, the 
orientation of the spin alignment axis, Ŝ = (βP ,� P ), must  
be known, in addition to the values of P  , P   . The  spin  
alignment axis is associated with the expectation value of the 
magnetic moment (either parallel or antiparallel) and thus can 
be controlled by the guide feld at the target as explained in 
Sec. III C. The components of the vector polarization are 
analogous to the proton case, 

PX = P  sin βP cos( P − ϕ), 

PY = P  sin βP sin( P − ϕ), (4) 

PZ = P  cos βP , 

while the tensor moments are given by [9,11] 
3PXY = P   sin2 βP sin 2( P − ϕ),4 

PYZ  = 3 P   sin βP cos βP sin( P − ϕ),2 
3PXZ = 2 P   sin βP cos βP cos( P − ϕ), (5) 

3P ≡ PXX − PYY  = 2 P   sin2 βP cos 2( P − ϕ), 
1PZZ = P   (3 cos2 βP − 1).2 

B. Polarized cross section 

We start from Eq. (1), eliminate the dependent variables 
using Eq. (2) and insert Eqs. (3)–(5). This leads to an equation 
for σ/σ0 that contains the values for beam and target polariza-
tion, Q, P  , P   , the orientations of beam polarization vector 
Q̂ and of the target spin alignment axis Ŝ, the observables, 
and the azimuth ϕ of the scattering plane. At this stage it 
is practical to evaluate the cross section for those specifc 
orientations Q̂(βQ,� Q) and Ŝ(βP ,� P ) that are actually used 
in this experiment. 

064003-2 



�

�

�

�

�

�

ANALYZING POWERS AND SPIN CORRELATION . . . PHYSICAL REVIEW C 74, 064003 (2006) 

We used different scenarios for beam and target polariza-
tion. In scenario V90 (see Sec. IV A2) the beam polarization 
was vertical (along the y axis), thus βQ = π/2, and Q = 
π/2. For a sideways deuteron spin alignment axis Ŝ, we have  
βP = π/2, and P = 0. Eq. (1) then reduces to 

σ/σ0 = 1 + QAp cos ϕ − 3 P  A
d sin ϕ y 2 y 

3− 1 P   [Azz−A cos 2ϕ] + P  Q{Cx,x−Cy,y} sin 2ϕ4 4 �� � �� − 1 − 1 
4 P  Q Czz,y + Cxy,x 2 C �,y cos ϕ � � �

1− Cxy,x + 2 C �,y cos 3ϕ . (6) 

In deriving this equation, when products and powers of 
trigonometric functions of ϕ occur, they are transformed to 
expressions containing only members of the orthogonal set 
cos(kcϕ) (kc = 0, 1, 2 . . .) and sin(ksϕ) (ks = 1, 2 . . .). On the 
other hand, for a vertical deuteron spin alignment axis we have 
βP = π/2, and P = π/2), and we obtain 

3σ/σ0 = 1 + QAp cos ϕ + P  A
d cos ϕ y 2 y 

− 1
4 P   [Azz + A cos 2ϕ] 
3+ 4 P  Q[{Cx,x + Cy,y} − {Cx,x − Cy,y} cos 2ϕ] �� � �� − 1 P  Q Czz,y − Cxy,x − 1 C �,y cos ϕ4 2 � � �

1+ Cxy,x + C �,y cos 3ϕ , (7)2 

and choosing the deuteron spin alignment axis along the beam 
direction (βP = 0), leads to 

1σ/σ0 = 1 + QAp
y cos ϕ + P   Azz2 

+ 3
2 P  QCz,x sin ϕ + 1

2 P   QCzz,y cos ϕ. (8) 

During the course of the experiment, the values of Q,P  

and P   can be made positive, negative or zero. This is used 
to separate terms with vector and tensor polarization, and 
terms that contain only the beam or the target polarization 
(analyzing powers), or both (spin correlation coeffcients). 
The remaining decomposition makes use of the known 
azimuthal dependence of the cross section. It should be 
pointed out that the actual results of the experiment are 
the factors associated with the trigonometric functions in 
Eqs. (6)–(8). In some cases these are linear combinations of 
spin observables. Inspecting Eqs. (6)–(8) one sees that these 
combinations can be combined to extract the following observ-

pables: Ay , Ad
y , A , Azz, Cx,x , Cy,y , Cz,x , Czz,y , Cxy,x , and C �,y . 

Other choices of the polarization directions (see Sec. IV A1) 
are treated in an analogous fashion. The resulting spin-
dependent cross sections are given in the Appendix. 

III. EXPERIMENTAL EQUIPMENT 

A. Overview 

This experiment makes use of a stored, polarized proton 
beam in the Indiana Cooler. The experiment is located in the 
A-region of the Cooler where the dispersion almost vanishes 
and the horizontal and vertical betatron functions are small 
[12], favoring the use of a narrow target cell. The target setup 
(Fig. 1(a)–1(d)) consists of an atomic beam source [13,14] 
that injects polarized deuterium atoms into a storage cell. The 

FIG. 1. Top view of the target and detector setup. The stored beam 
travels from right to left. Shown are the atomic beam source and the 
target cell (a–d), the detector system (e, j–m), and the guide feld (i,g) 
and compensating (h) coils. An additional 6.4 mm thick scintillator 
detector (n) is not used in this experiment. Also shown are two beam 
position monitors (f). 

proton and the deuteron from elastic scattering are detected 
in coincidence by a detector system consisting of scintillators, 
wire chambers (j–m) and recoil detector array (e) surrounding 
the target cell. 

B. Polarized proton beam 

1. Beam properties 

Protons are produced by a polarized ion source, 
accumulated in the injector synchrotron and then injected into 
the Cooler. About ten transfers at 1 Hz result in a typical stored 
current of about 500 µA. The experiment was carried out at 
135 and 200 MeV (the actual beam energies are known to 
+/−0.1 MeV and have been measured from the orbit 
frequency and ring circumference to be 135.0 and 203.3 MeV). 
The beam polarization is typically 0.75; its sign is reversed for 
every fll of the Cooler. Prior to each fll, the ring is completely 
emptied by resetting the main magnets. The betatron tunes of 
the Cooler are adjusted to avoid any depolarizing resonances; 
the polarization lifetime is then much longer than the beam 
lifetime. 

2. Longitudinal beam polarization 

In the absence of nonvertical felds, the stable spin direction 
in a circular accelerator is vertical. In order to obtain longi-
tudinal beam polarization at the target, two “spin rotators” 
(longitudinal magnetic felds) are used [15]. One rotator is 
introduced by operating all solenoids in the cooling region with 
the same sign. These include the main solenoid that confnes 
the electron beam and two solenoids, immediately upstream 
and downstream, which are normally used to compensate for 
the cooling solenoid feld. Between the target and the cooling 
region, the beam is bent by 120◦ . The other rotator consists 

064003-3 



B. V. PRZEWOSKI et al. PHYSICAL REVIEW C 74, 064003 (2006) 

of a superconducting solenoid halfway between the target and 
the cooling region (for details, refer to Ref. [15]). Data with 
longitudinal beam polarization were taken only at 135 MeV. 
At this energy, a longitudinal feld integral of 0.56 T m for 
both rotators results in nearly longitudinal polarization with a 
small (about 0.08) vertical component. 

Of the injected beam polarization, only the component 
that is parallel to the stable spin direction at the injection 
point is preserved. When the spin rotators are used, the stable 
spin direction at injection is tilted by about 45◦ towards the 
beam direction, i.e., no longer vertical. Thus, an additional 
solenoid was used in the transfer beam line between injector 
synchrotron and the Cooler to match the two directions. 

C. Polarized deuteron target 

1. Overview 

The internal, polarized deuteron target is generated by 
injecting polarized atoms from an atomic beam source (ABS) 
into a storage cell. The target is placed in a weak guide feld 
generated by a set of Helmholtz-like coils (Fig. 1(g), 1(i)). A 
set of similar coils with opposite feld (h) practically eliminates 
a correlated position shift of the stored beam. 

In the ABS, atoms from an 18 MHz dissociator (a) emerge 
through an aluminum nozzle that is kept at liquid nitrogen 
temperature. The atoms then pass through two stages, each 
consisting of a set of sextupole magnets (b) followed by a 
medium feld transition unit (c). In the sextupole magnets the 
atoms are separated according to their electron polarization. 
In the frst medium-feld transition unit (MF1), transitions 
between hyperfne states are induced. After passing through 
the second set of sextupole magnets, which rejects one of the 
three hyperfne states present in the beam, another transition 
between hyperfne states may be induced in the second medium 
feld transition unit (MF2). 

For previous operation with hydrogen, the ABS had been 
equipped with a single, fxed-gradient medium-feld transition 
unit located after the frst set of sextupole magnets. Operation 
of the ABS in this confguration is extensively described 
elsewhere [14]. Here, we concentrate on the description of 
two new medium-feld transition units (c) that were added for 
operation of the source with deuterium and were used for the 
frst time by this experiment. 

2. Medium-field transitions 

A medium-feld transition operates in magnetic felds of 
0.1Bc to 0.2Bc, where Bc is the hyperfne interaction feld 
of 50.7 mT for hydrogen and 11.7 mT for deuterium. In 
addition to a uniform (offset) feld, a feld gradient along the 
beam direction is required to satisfy the condition of adiabatic 
passage. 

Multiple transitions can be made by adjusting the offset 
feld so that the beam passes in sequence through feld regions 
where the populations of different pairs of hyperfne states are 
interchanged at a given, fxed RF frequency [16]. 

In order to enable remote change between different op-
erating modes of the target, two new transition units with 
variable gradient and variable offset feld were installed. The 

linearity of the gradient feld over the transition region as well 
as the homogeneity of the offset feld were measured prior to 
installation of the units in the ABS. 

For deuterium the gradient feld is set to +0.2 mT/cm. The 
RF coil of each MF unit consists of a 70 mm long, 12-turn 
solenoid with 34 mm diameter, made from 1.6 mm diameter 
wire. For deuterium, the coils are operated at 60.5 MHz, and 
for hydrogen at 30 MHz. The transition units are water-cooled. 
The currents in the offset and gradient coils are remotely 
controlled. This makes it possible to quickly change between 
vector, positive tensor, and negative tensor polarization, while 
data are being acquired. Hall probes are used to monitor the 
feld in the transition units. 

3. Operation of the atomic beam source 

After the frst set of sextupoles the atomic beam consists 
of states 1+2+3, where the states are labeled in order of 
decreasing energy in a nonzero magnetic feld [17]. Up to three 
transitions are made sequentially in MF1. The gradient feld 
is kept constant while the offset feld is changed for different 
spin states. For a small offset feld no transition is made in 
MF1. When the offset feld is increased, the atoms undergo a 
3 → 4 transition. 

When the feld is further increased the atoms pass through 
the 3 → 4 transition followed by the 2 → 3 transition. If 
the offset feld is increased even further, the atoms un-
dergo the 3 → 4, 2 → 3, and 1 → 2 transitions sequen-
tially. The second set of sextupoles eliminates state 4, 
so that one is left with states 1 + 2 + 3, 1 + 2, 1 + 3 or  
2 + 3 depending on whether none, one, two, or three 
transitions are made in MF1. The corresponding maxi-
mum nuclear polarizations of the atomic beam, before 
entering MF2, are (P , P  ) = (+1/3,−1/3), (P , P  ) = 
(+2/3, 0), (P , P  ) = (+1/3, 0) and (P , P  ) = (0,−1). 
MF2 is only needed to produce positive tensor polarization. 
Then, its parameters are set such that atoms in states 1 
and 3 with polarizations (P , P  ) = (+1/3, 0) undergo the 
3 → 4 transition. Consequently, after passing through MF2 
the atomic beam contains states 1 and 4 with polarization 
(P , P  ) = (0,+1). 

4. Target cell 

The target cell (Fig. 1(d)) is a 27 cm long tube of 
12 mm diameter made from 0.05 mm thick aluminum, through 
which the stored beam travels, very similar to a design used 
earlier [18]. The cell is coated with Tefon in order to minimize 
depolarization by wall collisions [19]. The atomic beam from 
the ABS enters through a feed tube attached to side of the 
cell. The length of the cell between the feed tube and the 
downstream end is 12.5 cm; the upstream part is 14.5 cm long. 
The cell is supported at the intake of the feed tube (away 
from the beam), minimizing obstructions in the path of the 
scattered particles. Routinely, the target thickness is about 
1013 atoms/cm2. 

The target cell is centered within an array of Helmholtz-like 
coils that provide horizontal, vertical and longitudinal guide 
felds of about 0.3 mT for alignment of the target polarization 
[13,20]. Certain polarization observables require that the angle 
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of the spin alignment axis is at β = 45◦ with respect to the 
beam. This is achieved by simultaneously exciting either 
the vertical and longitudinal coils, or the horizontal and 
longitudinal coils. 

5. Spin exchange 

The measured values for both, vector and tensor, target 
polarizations were about 0.45. This means that the tensor 
polarization is less than half and the vector polarization 
only about 70% of the theoretical maxima (1.0 and 2/3, 
respectively). Some decrease from the maximum values can 
be expected from wall depolarization, incomplete rejection of 
unwanted states by the sextupoles and an ineffciency of the 
transition units. 

However, in a dedicated measurement [21] we also found 
that the tensor polarization decreases with increasing target 
thickness, while, at the same time, the vector polarization 
shows no such dependence. This behavior is consistent with 
the loss of polarization due to spin exchange between the 
deuterium atoms in the cell. A model calculation of the effect 
of spin exchange [22] explains the observed tensor polarization 
in a weak magnetic feld as a function of target density. 

D. Unpolarized target 

The procedure to calibrate the beam polarization (see 
Sec. V B), calls for an unpolarized, mixed hydrogen and 
deuterium target. To this aim, an 1H2/2H2 gas mixture is 
prepared by flling an empty cylinder with approximately equal 
parts of hydrogen and deuterium (one does not have to know 
the exact mixing ratio for the calibration). The gas mixture 
is admitted to the cell through a thin (1 mm diameter) Tefon 
hose, connected to a nipple at the center of the cell at a rate 
comparable to the fux of atoms from the ABS. 

E. Detector system 

1. Overview 

The outgoing proton and deuteron from p + d elastic 
scattering are detected in coincidence. The detector setup is 
shown in Fig. 1. Most of the components of the detector have 
been used previously and are described in detail in Ref. [18]. 

2. Forward detector 

The forward going particle is detected in a stack consisting 
of a �E (“F”) detector (Fig. 1(j)), two wire chambers (k,l) 
with two wire planes each, and a stopping (“K”) detector (m). 

The F-detector is made from organic scintillator material, 
segmented into an upper and a lower half. Its initial thickness 
of 1.5 mm has been increased to 6.4 mm during the course 
of the experiment. The thicker detector improves the mass 
resolution for particle identifcation. The two wire chambers 
are positioned 22.4 cm and 30.2 cm from the target center and 
have a wire spacing of 3.2 mm and 6.4 mm, respectively. The 
K-detector is made from 15.2 cm thick scintillator, segmented 
into four quadrants. The forward detector system covers the 
laboratory polar angles between 10◦ and 45◦ . 

FIG. 2. Array of 18 microstrip recoil detectors (silicon barrel). 
Also shown is the thin-walled target cell. The direction of the stored 
beam (a), and the direction of the polarized atomic beam (b) are 
indicated. 

3. Recoil detector 

The recoil particle is detected in a so-called silicon barrel 
(Fig. 1(e)) that consists of an array of 18 silicon strip detectors 
[23] surrounding the target cell. Figure 2 shows the silicon 
barrel with the target cell in its center. The strips are oriented 
in such a way that they measure the azimuth of the recoil 
with a resolution of 2◦ . The silicon detectors yield an energy 
measurement from the back plane and a logic signal for each 
strip on the front plane. Energy and time are read out for 
each individual detector, but the strips at the same azimuth 
for a group of three detectors along the beam are electrically 
connected to reduce the number of electronics channels. The 
detector with the hit is identifed from the energy signal. The 
silicon detectors are calibrated periodically using an array of 
six low-level (nCi) 241Am sources, mounted at the upstream 
end of the silicon barrel. Each source is positioned to illuminate 
one of the six sides of the barrel. 

The active area of each detector is 4 × 6 cm2. The  
downstream ring consists of six 500 µm thick detectors while 
all other detectors are 1000 µm thick. The detectors are 
operated at full depletion and cooled to about 0◦ C. 

It has been found that exposure to atomic deuterium or 
hydrogen has a detrimental effect on silicon detectors. Even a 
short exposure (30 min) to ambient atomic deuterium causes an 
increase in leakage current that renders the detectors useless for 
data acquisition. To prevent atomic deuterium that is leaking 
from pinholes in the cell from reaching the detectors, the target 
cell is placed in a bag made from thin Kapton. In addition, 
copper recombination baffes are placed around the feed tube 
and at the ends of the barrel. On a copper surface, atoms 
recombine into harmless molecular deuterium. In this way, 
the effect of atomic deuterium can be reduced to manageable 
proportions. Fortunately, the effect of atomic deuterium on 
the detectors is reversible. Thus, while no longer exposed to 
atomic deuterium, i.e., between runs, the detectors recovered. 
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IV. MEASUREMENT source is set to positive tensor polarization for two normal 

A. Cycle time scenarios 
subcycles, to vector polarization for two subcycles, and fnally 
to negative tensor polarization for three subcycles. Negative 

1. Definitions, parameters varied tensor is measured longer to approximately compensate for the 

A “cycle” is the time between flls of the Cooler with beam. 
Proton beam of opposite polarization is injected for alternating 
cycles. After the fll, the experiment is enabled for data taking. 
The operating parameters (guide felds and transition units) of 
the target are varied during the cycle in order to acquire data 
with different target polarizations, but with the same stored 
beam. This is invaluable in minimizing systematic errors. 

The guide feld that determines the spin alignment axis of 
the deuteron target is changed in 2 s intervals. The normal 
sequence includes the six directions left (+x), right (−x), 
down (−y), up (+y), along (+z) and opposite (−z) to the beam 
axis. We call this a “sub-cycle”. Note that a sign change of the 
guide feld affects the vector, but not the tensor polarization. 

Vector or tensor polarization of the target is selected by 
enabling different sets of transitions (Sec. III C3) by remotely 
changing the offset feld in the transition units, while keeping 
the gradient feld constant. To overcome the effects of hystere-
sis, the transition units are de-gaussed before any change. This 
is accomplished by applying a 2 Hz alternating current with 
exponentially decreasing amplitude to all transition-unit coils. 
De-gaussing takes about 5 s (see Fig. 3). In the following we 
describe the three cycle-time scenarios used in this experiment. 

2. Scenario V90 

In scenario V90 the beam polarization is vertical. The target 
guide feld is along the x or y axis (βP = 90◦), or the z axis 
(βP = 0◦). Within each cycle, the state of the atomic beam 

FIG. 3. Stored beam current, the current in the MF1 offset coil, 
and the event rate during data taking during a scenario-V90 cycle. 
The cycle length is 140 s. The increases in event rate are due to the 
thicker target during the de-gaussing of the transition units. 

loss in intensity due to the fnite beam lifetime. Note, that both 
signs of vector polarization are available because the guide 
feld changes sign during the subcycle. 

Figure 3 shows three selected quantities measured during 
a V90 cycle. The top panel illustrates the beam current in 
the ring. The current in the offset feld coil in transition 
unit MF1 is shown in the middle panel. One can see the 
three current plateaus (positive tensor, vector, negative tensor), 
each preceded by the de-gaussing of the coil. The event rate 
during data taking is depicted in the bottom panel. During 
de-gaussing, no transitions are made, admitting an additional 
sub-state to the target cell; thus, the target thickness and 
therefore the event rate increase during de-gaussing. A total of 
5662 (7737) V90 cycles were acquired at 135 (200) MeV. 

3. Scenario V45 

The purpose of scenario V45 is to measure observables that 
require a deuteron spin alignment axis that is not along the 
axes of the coordinate frame. To this aim, a subcycle is used 
for the guide felds in which two sets of coils are energized 
simultaneously, the corresponding magnetic feld directions 
adding vectorially. This special subcycle consists of the eight 
states (+x,+z), (+x,−z), (−x,+z), (−x,−z), (+y,+z), 
(+y,−z), (−y,+z), and (−y,−z). This corresponds to 
orientations of the deuteron spin alignment axis at angles 
βP = 45◦ or 135◦, either in the horizontal or the vertical plane. 
Again, these states are changed every 2 s. The atomic beam 
source is set in turn to positive polarization for two special 
subcycles and negative tensor polarization for three subcycles. 
Vector polarization is not used in scenario V45. The beam 
polarization is also vertical. A total of 2317 (1873) V45 cycles 
were acquired at 135 (200) MeV. 

4. Scenario L90 

The purpose of scenario L90 is to measure some observ-
ables that require longitudinal beam polarization (see Table I). 
During the whole cycle the target is vector-polarized, and a 
normal subcycle is used as in scenario V90. Scenario L90 is 
used only at 135 MeV (a series of power outages is responsible 
for the lack of data at the higher energy). A total of 1905 L90 
cycles were acquired. 

B. Event sorting 

The goal of event sorting is to select p + d elastic scattering 
events using the signals generated by the detectors. The 
condition that triggers the readout of the entire detector is 
a coincidence between the upper half of the K-detector and 
the lower half of the silicon barrel, or vice versa. 

For each event, the angles of the forward prong (10◦ < 
θlab < 45◦ , 0◦ < ϕ <  360◦) are determined from the wire 
chambers. Normally there is one hit in each of the four wire 
chamber planes, however, events with one plane missing or 
with two hits in one or two planes can be reconstructed and 
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TABLE I. List of asymmetry terms obtained under the different running conditions (scenarios). For details see Secs. IV A 
and V B. 

Term 

QAp
y 

P  A
d
y 

P   A�

P   Azz 

Scenario Term Scenario Term 

V 90 V 45 L90 V 90 V 45 L90 
√ √ √  √ √  

QP  (Cx,x + Cy,y ) QP   Czz,y √ √  √ √  
QP  (Cx,x − Cy,y ) QP  C �,y √ √  √ √  

QP  Cz,x √ √  
QP  Cx,z √ 

P  Axz QP Cz,z 

are also used. The angular resolutions estimated from the wire 
spacing are δθlab = 2.2◦ and δϕ = 2.6◦ . 

The gains of all scintillator tubes are corrected in software 
for shifts due to different guide felds in order to eliminate 
spin dependence of the detector performance. Also corrected 
are the position dependence of the light collection effciency 
and the time response of the F- and the K-detectors. For more 
details, see Ref. [18]. 

The forward particle can be either a proton or a deuteron. 
At 135 MeV incident energy both particles stop in the 
K-detector, while at 200 MeV only the deuteron is stopped. 
Particle identifcation makes use of the correlation between 
the deposited energies in the F- and the K- detector (Fig. 4A), 
as well as the correlation between F-K time-of-fight and the 
deposited energy in the K- detector (B). To further discriminate 
against background from breakup events, additional gates are 
placed on the correlation between the scattering angle and 
energy deposited in the K-detector (C), consistent with elastic 
scattering kinematics, and the correlation between energy 

(A) 

(C) 

QP   Cxz,y √ 
QP   Cyz,x √ 1QP   (Cxy,x − C2 

1QP   (Cxy,x + C2 

Scenario 

V 90 V 45 L90 

�,y ) 

�,y ) 

√ √  
√ 

√ 
√ 

√ √  

√ √  

deposited in the silicon detector and the scattering angle of 
the forward prong (D). 

The silicon detectors measure the azimuth of the recoil 
with a resolution of 2◦ . Events where a single strip or a 
pair of adjacent strips fres are accepted in the analysis. This 
determines the azimuth of the recoil, and thus the differ-
ence �ϕ between the two prongs. Elastic scattering events, 
being coplanar, are required to have �ϕ between 175◦ and 
185◦ . 

The center-of-mass-angle θ , calculated from the forward 
lab angle, is sorted into 4◦ wide bins, and the azimuth ϕ into 12◦ 

bins. After applying all software conditions, two-dimensional 
(θ versus ϕ) arrays of yields are generated for each spin 
state, including all combinations of two signs of the beam 
polarization, target vector, positive tensor or negative tensor, 
and six (scenarios V90, L90) or eight (scenario V45) guide 
feld directions. A software gate on the cycle number versus 
cycle time is used to eliminate incomplete subcycles in order 
to reduce spin-dependent luminosity corrections. 

(B) 

FIG. 4. Identifcation of elastic scattering 
events at 135 MeV. Since the cross section for 
the two cases is very different, the contour values 
have been adjusted separately. Panels A–C show 
the energy in the F detector, the time-of-fight 
between the F and the K detector and the 
angle of the forward prong versus the energy 
deposited in the K detector (in arbitrary units). 

(D) The forward angle versus the energy of the recoil 
is shown in panel D. The loci corresponding to 
a forward-going proton or deuteron are labeled 
accordingly. 
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C. Background 

One expects that unwanted background events arise mainly 
from p + d breakup. In order to assess the effect of background 
on the spin observables, we study the distribution of the 
difference �ϕ between the azimuths of the forward and recoil 
particle. Figure 5 shows this distribution after all other cuts 
have been applied. One sees that the coplanar peak at 180◦ 

from elastic scattering is superimposed on a wider distribution, 
which we associate with background. For good events, �ϕ is 
required to fall between 175◦ and 185◦ . In order to generate 
a background-enriched event sample, we instead select the 
wings with 50◦ <� ϕ < 150◦ and 210◦ <� ϕ < 310◦ , and 
repeat the process of event sorting with the same conditions 
as for good events, except for the coplanarity requirement. 
From the resulting yields we then deduce background-enriched 
observables. 

The amount of background (5%–10%) under the �ϕ peak 
is determined from a smooth approximation of the wings 
(solid line in Fig. 5). Assuming that the observables associated 
with the background under the peak are the same as for the 
background in the wings, it is straightforward to calculate a 
background correction for the good data. This is done for 
all θ bins separately. We fnd that these corrections for all 
observables at all angles are smaller than the statistical errors 
in all cases, refecting the fact that the observables from 
events in the peak or in the wings are very similar. Thus, it 
seems that the event conditions discriminate rather well against 
p + d breakup, and that the events in the �ϕ wings are not 

FIG. 5. Distribution of �ϕ, the difference between the azimuth 
of the forward and the recoil particle. The peak at 180◦ is due to 
(coplanar) elastic scattering. Gates used for real event and background 
identifcation are indicated by the solid and dashed lines, respectively. 
The effect of the background (solid line) on the data is discussed in 
Sec. IV C 

background at all, but real events in the tail of the angular 
resolution. 

We conclude that corrections due to background are 
negligible. This conclusion is supported by an analysis of the 
cross section, discussed in Sec. V D. 

D. Corrections 

1. Geometric corrections 

The wire chambers defne the coordinate frame of the 
experiment. Their positions have been surveyed optically prior 
to the experiment. The beam position, which may vary for 
different setups of the Cooler ring, can be extracted from 
the distribution of the event vertex positions. The original 
wire chamber coordinates are then offset such that the beam 
coincides with the z axis. The magnitude of the offset was 
always less than 1.5 mm. 

The scattering angle is determined from the intercept of 
the forward track with the two wire chambers. The distance 
between the chambers affects the absolute value of this angle. 
A small correction to the wire chamber positions is applied 
such that the zero transitions of the vector analyzing power at 
135 MeV [3] at forward and backward angles are reproduced. 

With the wire chamber offsets known, the positions of the 
silicon detectors are determined. For each silicon detector three 
parameters are adjusted, namely the x and y coordinates of 
the center of strip 1 and an angle of rotation about the strip 
direction. These parameters remained the same throughout 
the experiment, unless a detector was replaced. In addition, 
overall x and y offsets of the entire barrel are determined to 
account for shifts of the beam position (usually accompanying 
an energy change) by requiring that the difference in azimuth, 
�ϕ, between the forward and the backward prongs peaks 
at 180◦ . 

2. Spin-dependent deadtime 

In the case of longitudinal beam polarization the trigger 
rate may depend on the alignment of beam and target spin, 
which may translate into a spin-dependent deadtime. When 
the deadtime of the acquisition system, determined from the 
ratio of triggers issued and processed, is sorted according to 
spin states, a small dependence of the deadtime on the relative 
alignment of beam and target spin is found. Correcting the 
measured yields accordingly results in a small offset (0.026) to 
Cz,z, which is measured only at 135 MeV. All other observables 
are unaffected by deadtime. 

V. DATA ANALYSIS 

A. Extraction of observables from spin-sorted yields 

1. Spin-dependent yields 

Throughout this experiment, the proton beam polarization 
is either vertical or longitudinal and its sign is alternated every 
cycle. In addition, the target polarization (vector or tensor, 
guide feld direction) is varied, during the cycle, according to 
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three different scenarios (Sec. IV A1). For each combination of 
the beam and target parameters, the event sorting (Sec. IV B) 
results in yields Y (or, number of events), stored in an array as 
a function of  θ (4◦ bins) and ϕ (12◦ bins). 

2. Extracting observables 

We make the following assumptions: 

(i) The magnitude of the target polarization does not depend 
on the direction of the guide feld. This has been verifed 
to a high degree of precision (±0.005) in previous 
measurements with this apparatus [13]. For guide felds 
of opposite sign, the vector polarization has opposite sign, 
but the tensor polarization stays the same. 

(ii) The integrated luminosity in two target states of opposite 
sign of the target feld is the same. A possible difference 
that arises from the decrease of the beam intensity by 
about 0.1% per second is negligible. 

(iii) The ratio of the luminosities acquired with positive and 
negative tensor target polarization is the same for both 
signs of the beam polarization. 

(iv) When the target is vector-polarized, the tensor polar-
ization vanishes (verifed during commissioning of the 
transition units). The converse, admixture of vector 
polarization to a tensor target, is of no concern since in 
the analysis of tensor terms, vector terms cancel because 
of the changing sign of the guide feld. 

We do not assume that the magnitudes of opposite-sign 
beam polarization and of opposite-sign target tensor polariza-
tion are the same, or that data with equal integrated luminosity 
have been acquired with opposite sign of beam and target 
tensor polarization, since in the present experiment this is not 
strictly the case. However, we start with the concept of an ideal 
experiment, where these conditions would also be fulflled, and 
introduce departures from an ideal experiment as corrections. 

3. Asymmetries 

We select four yields, Y++, Y+−, Y−+, Y−−, where the frst 
sign refers to the sign of the beam polarization, and the second 
to the sign of the target polarization. This can be done either 
for the vector or the tensor target. From the four yields we form 
the following three ratios, henceforth called asymmetries: 

(Y++ + Y+−) − (Y−+ + Y−−)
RQ = , (9)

Y++ + Y+− + Y−+ + Y−− 

(Y++ + Y−+) − (Y+− + Y−−)
RP = , (10)

Y++ + Y−+ + Y+− + Y−− 

(Y++ + Y−−) − (Y−+ + Y+−)
RQP = . (11)

Y++ + Y−− + Y−+ + Y+− 

For an ideal experiment, RQ only depends on the beam 
polarization, RP only on the target polarization, while the 
correlation asymmetry RQP depends on both. In these ratios, 
the detector effciency cancels, and thus azimuthal variations 

in effciency disappear. Like the yields, the asymmetries R are 
functions of θ and ϕ. 

In scenario V90, there are the three guide-feld directions, 
Bx, By and Bz (sideways, vertical and longitudinal), and data 
are taken with a vector or a tensor target. Thus, there are 
18 asymmetries. An example of the ϕ-dependences of these 
asymmetries is shown in Fig. 6. These ϕ distributions form the 
basis for the extraction of the observables. 

It is straightforward to express the asymmetries in terms of 
the observables by inserting the expressions for the polarized 
cross section into Eqs. (9)–(11). The beam asymmetry is 
independent of the target state and given by 

RQ = QAp cos ϕ. (12)y 

The target asymmetries RP and the correlation asymmetries 
RPQ  depend on the direction of the guide feld (x, y, and z, 
indicated by a superscript) and on whether the target is vector 
(P  ) or tensor (P   ) polarized. The target asymmetries are then 
given by 

Rx = −  3 P  A
d sin ϕ, (13)P  2 y 

y 3R = P  A
d cos ϕ, (14)P  2 y 

RP
x

   
= −  4

1 P   [Azz − A cos 2ϕ], (15) 
y

R = −  1 P   [Azz + A cos 2ϕ], (16)P   4 

Rz = 1 P   Azz, (17)P   2 

and the correlation asymmetries by 

3Rx = P  Q(Cx,x − Cy,y) sin  2ϕ, (18)P  Q 4 

RP

y

  Q = 3
4 P  Q[(Cx,x + Cy,y) − (Cx,x − Cy,y) cos 2ϕ], (19) 

Rz = 3 P  QCz,x sin ϕ, (20)P  Q 2 �� � �� 
Rx = −  1 P  Q Czz,y + Cxy,x − 1 C cos ϕ�,y P   Q 4 2 � � �

1− Cxy,x + C �,y cos 3ϕ , (21)2 �� � �� y
RP   Q = −  14 P  Q Czz,y − Cxy,x − 1

2 C �,y cos ϕ � � � + Cxy,x + 1
2 C �,y cos 3ϕ , (22) 

1Rz = 2 P   QCzz,y cos ϕ. (23)P   Q 

Comparison of these expressions with Fig. 6 shows that the 
expected ϕ-dependences are borne out nicely by the data. The 
values for the observables times the respective polarizations 
(henceforth called “asymmetry terms”) are then extracted 
from the yields by ftting simple trigonometric functions 
[Eqs. (12)–(23)] to the ϕ-dependence (solid curves in Fig. 6). 
This procedure is carried out for each polar angle bin. 
The primary measured quantities are thus these asymmetry 
terms. Note, that in some cases asymmetry terms are linear 
combination of observables. 

The statistical errors are derived from the errors δY 2 = Y 
of the yields in Eqs. (9)–(11) by standard error propagation, 
neglecting covariance terms. This is justifed since the yields 
are the result of separate experiments and taken at interleafed, 
but different times. The same is true for the R’s in Eqs. (13)– 
(23), which are obtained with different states of the polarized 
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FIG. 6. The asymmetries R for scenario 
V90 versus the azimuth ϕ. The three columns 
correspond to the orientations x, y, and  z of 
the target guide feld. The fve rows are for 
the target asymmetry, the vector target and 
vector correlation asymmetries, and the tensor 
target and tensor correlation asymmetries. The 
numbers in brackets refer to the corresponding 
equations in Sec. V A3; the ft based on these 
expressions is shown as a line. The values of R 
are scaled to fll the graphs. Scale factors range 
from 3.8 to 13.0. For this fgure, polar angles 
from 108◦ to 140◦ have been integrated. The 
asymmetry in the unnumbered panel is expected 
to vanish by parity conservation. 

source or the target feld. The asymmetry terms follow from a 
ft to ϕ distributions where each bin corresponds to a different 
part of the detector. 

4. Departure from an ideal experiment 

Alignment of the polarization directions. The coordinate 
axes of the experiment are defned by the wire chambers, 
while the beam polarization direction is given by the spin 
closed orbit and the target polarization direction by the guide 
felds. Discrepancies between these three frames are taken 
into account by a shift δϕ of the azimuth scale. This shift is 
easily determined by comparing the data with the predicted 
ϕ dependence. For the target orientation we fnd δϕ = −3◦ , 
while the beam orientation is shifted by δϕ = −6◦ at 135 MeV 
and by δϕ = −3.5◦ at 200 MeV. The error in determining the 

ϕ offsets is ± 0.5◦ . A small correction term is introduced in the 
analysis that takes into account that the orientations of target 
and beam are slightly different. 

Differences in polarization and luminosity of states of 
opposite polarization. Beam polarization of opposite sign is 
produced with different transition units in the ion source and it 
is not guaranteed that the two polarizations have the same mag-
nitude. The imbalance q (the difference divided by the sum) 
varies from run to run and is typically 10%. Similarly, target 
tensor polarization of opposite sign uses different transitions in 
the ABS. The imbalance p in this case is 1%–2%. The relative 
luminosities with beam of opposite sign may also differ, but 
when averaged over many cycles, the corresponding imbalance 
µ is typically small (1%). The largest departure from an 
ideal experiment arises from the difference in luminosity 
with the tensor target states of opposite sign, occurring at 
different times in the cycle. There is systematic imbalance 
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η of about 18%, consistent with the beam lifetime. All four 
imperfection parameters, q, p, µ, and, η can be deduced from 
the data. Once they are known, the yield equations are worked 
out including new terms that depend on these parameters. 
Ignoring higher-order terms, this leads to a system of linear 
equations between the nonideal (measured) asymmetries and 
their corresponding ideal values. The latter are deduced and 
used in the analysis described in the preceding section. 

5. Results from different scenarios 

So far, we have described the method of analysis for sce-
nario V90. The same principle is used to deduce observables 
from runs under scenarios V45 and L90 (the corresponding 
cross sections are given in the appendix). Scenario V45 
(Sec. IV A3) uses a deuteron spin alignment axis bisecting 
the x- and z-axes, or the y- and z-axes, and scenario L90 
(Sec. IV A4) employs longitudinal beam polarization. Because 
longitudinal polarization is accompanied by a small vertical 
component, this measurement is also sensitive to some of the 
terms measured in scenario V90, albeit with much larger error. 
The asymmetry terms obtained from the three scenarios are 
listed in Table I. This list includes 15 of the 17 observables 
that can be measured with a polarized beam and target. Missing 
are the tensor correlation coeffcients Cyz,z and Cxy,z, which 
would have required a dedicated run with guide felds as in 
scenario V45, but with longitudinal beam polarization. 

Often angular distributions of the same asymmetry term 
(polarization times observable) are obtained from different 
scenarios. In addition, data have been collected during fve 
runs, separated in time. Since the beam and target polarizations 
are not necessarily the same, these measurements may differ by 
an overall factor. We have checked that multiple measurements 
of the same asymmetry term (from different scenarios or from 
different runs), after normalization, are consistent with each 
other. We have also verifed that the relative normalizations 
obtained from the analyzing powers are consistent with the 
(dependent) normalizations of the correlation coeffcients. 
Multiple measurements of the same term are then averaged, 
resulting in an angular distribution for each asymmetry term. 

B. Beam and target polarization 

1. General remarks 

In order to deduce the observables from the asymmetry 
terms, one must know the beam and target polarizations. This 
requires the determination of six numbers, namely Q, P  and 
P   at both beam energies. 

To achieve this, we have used two sources of information, 
namely a global phase shift analysis of p + p elastic scattering 
[24], and a published measurement of p + d scattering with 
a 270 MeV polarized deuteron beam at RIKEN [3]. The 
normalization of all our data at both energies is based solely 
on these two data sets. This has been made possible by a series 
of auxiliary measurements as described in the following. 

2. Vertical beam polarization at 135 and 200 MeV 

At both energies a set of data is obtained with an unpolarized 
target, obtained by bleeding an 1H2/2H2 gas mixture into the 
target cell (Sec. III D). The mixing ratio is adjusted to yield 
approximately the same number of p + d and p + p events. In 
addition to the normal sorting conditions for p + d scattering 
events, a second set of conditions is used to select p + p 

pscattering events. Thus, the p + d analyzing power Ay and the 
p + p analyzing power Ay(pp) are measured simultaneously, 
with the same beam. The values of Ay(pp) at the appropriate 
angles are obtained from the SAID phase shift solution SP03 
[24]. Therefore, for this data sample, the beam polarization and 

pconsequently the p + d analyzing power Ay are known. This 
establishes a calibrated standard that can be used to deduce 
the beam polarization Q from any data set that contains the 

pasymmetry term QAy . 
The statistical error that arises from normalizing the p + p 

data to the phase shift solution is 0.9% at 135 MeV and 2.3% 
at 200 MeV. 

3. Deuteron target polarization at 135 MeV 

The vector and tensor analyzing powers for p + d scattering 
have been measured recently at RIKEN [3] with 270 MeV 
deuterons, corresponding to a proton beam energy of 135 MeV. 
To obtain the RIKEN values at the angles measured in this 
experiment, we interpolate using a spline ft. The error of the 
interpolated values is taken as the average of the errors of the 
nearest-angle RIKEN points. 

Scaling our asymmetry term P  A
d to the RIKEN vector y 

analyzing power Ad yields the target vector polarization P  . y 
After scaling, the two angular distributions are consistent. The 
statistical error of the normalization factor is 1.5%. 

Scaling our asymmetry terms P  A , P  Azz and P   Axz 

simultaneously to the corresponding RIKEN data yields the 
target tensor polarization P   . After scaling, the angular 
distributions for all three observables are consistent, with 
the exception of A at backward angles, which we thus 
exclude from the scaling procedure. The statistical error of 
the normalization factor is 1.9%. 

4. Deuteron target polarization at 200 MeV 

In order to transport the target polarization calibration 
from 135 to 200 MeV, the Cooler is set up to accelerate 
the beam during an experimental cycle, a technique that has 
been described previously [25]. At the beginning of the cycle, 
unpolarized proton beam is injected at 135 MeV, and data are 
taken with a vector- and tensor-polarized target for about 100 s. 
The energy of the stored beam is then ramped to 200 MeV and 
data taking continues until the end of the cycle. This scenario 
is repeated for every cycle. It has been experimentally verifed 
that the target polarization is constant during the ramp [25]. 
Since the target analyzing powers at 135 MeV are known 
[3], such a measurement calibrates the analyzing powers at 
200 MeV. 

For the calibration export only the forward angles, where 
the cross section is large, are used. The data at both energies 
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are then scaled by the (common) target polarizations until they 
agree with the standard established at the lower energy. The 
statistical error of this normalization factor is 1.6% for the 
vector, and 2.4% for the tensor normalization. This results 
in calibrated deuteron analyzing powers at 200 MeV. The 
asymmetry terms of the main measurement at 200 MeV (at 
forward angles) are then scaled to the new standard. The error 
of this normalization is 1.2% for the vector, and 2.0% for the 
tensor normalization. 

The combined normalization errors due to the target 
polarization at 200 MeV are then 2.0% for the vector, and 
3.1% for the tensor part. 

5. Longitudinal beam polarization 

Data with longitudinal beam polarization have been ob-
tained only at 135 MeV, and only with a vector-polarized 
target (scenario L90, Sec. IV A4). 

The longitudinal beam polarization is determined from 
p + p elastic scattering. Since the longitudinal analyzing 
power vanishes, spin correlation coeffcients must be used 
and a polarized target is necessary. To this effect, the ABS 
is changed to produce a target of polarized H atoms. 

The measured asymmetry terms QCz,x(pp) and QCz,z(pp) 
for p + p scattering are then scaled simultaneously to the 
corresponding values of the SAID phase shift solution SP03 
at the appropriate angles. The scaling error is 1.4%. This 
establishes the longitudinal beam polarization. 

The p + p data are bracketed in time by p + d data runs 
immediately before and after. The measured asymmetry term 

p
QAy from the p + d runs is the same within error, thus the 
beam polarizations Q for the p + p and the p + d runs are 
also the same. The target vector polarization for scenario L90 
is obtained as described in Sec. V B3, with a normalization 
error of 1.7%. The measured vector correlation coeffcients 
can then be evaluated. 

C. Results 

The normalization procedure described in the preceding 
section removes the polarizations from the asymmetry terms. 
At this stage, the terms containing more than one observable 
are reduced to single observables. The fnal results of this 
experiment are shown as solid symbols in Figs. 7 and 8. 
They are also available in numerical form from the authors 
upon request. The errors shown are statistical only. The 
corresponding normalization uncertainties are summarized in 
Table II. 

The open symbols in Figs. 7 and 8 mark previous polar-
ization measurements in p + d elastic scattering at or near 
the two energies of this experiment. A fairly large number 

pof proton analyzing power data (Ay ) have been measured; 
they include Ref. [5] (Tp = 135 MeV, 31◦ < θ <  170◦), 
Ref. [26] (Tp = 198 MeV, 80◦ < θ <  170◦), Ref. [27] (Tp = 
120, 200 MeV, 75◦ < θ  <  99◦), Ref. [6] (Tp = 135, 199 MeV, 
θ = 94◦), and Ref. [4] (Tp = 190 MeV, 30◦ < θ <  115◦). 

At Tp = 135 MeV, a comprehensive set of all four deuteron 
analyzing powers (Ad

y,A  , Azz and Axz), measured with a 
270 MeV polarized deuteron beam, is reported in 

TABLE II. Overall normalization errors in % for 
the different observables at 135 and 200 MeV (for 
more detail, see Sec. V B) 

Energy (MeV) 135 200 
Ap 0.9 2.3 y 

Ad 1.5 2.0 y 

Axz, A  , Azz 1.9 3.1 
Vector correlation coeffcients 1.7 3.0 
Tensor correlation coeffcients 2.1 3.9 
Cx,z, Cz,z 4.6 – 

Ref. [1] (57◦ < θ  <  138◦) and Refs. [2] and [3] (10◦ < θ <  
66◦ , 117◦ < θ <  178◦). At Tp = 200 MeV, an older mea-
surement of the deuteron analyzing powers (35◦ < θ <  135◦) 
exists [28]. Finally, the deuteron analyzing power (Ad ) and the y 
only previous spin correlation data (Cy,y) have been measured 
with an optically pumped target at the Indiana Cooler [7] 
(Tp = 200 MeV, 68◦ < θ  <  113◦). 

Our data agree well with previous measurements, with the 
exception of the RIKEN measurement of A at 135 MeV 
near θ ∼ 155◦ . Note that the normalization of the present data 
is independent of earlier measurements with the exception 
of the deuteron analyzing powers at 135 MeV [3] that were 
used to determine the target polarizations for the 135 MeV 
measurement. 

D. Cross section 

It is diffcult to obtain a reliable fgure for the absolute 
luminosity with an extended internal target and a stored beam, 
and thus a normalization for a cross section measurement. 
Nevertheless, it is still possible to extract a relative cross 
section, i.e., its angular dependence except for an unknown 
normalization factor. Agreement with existing data would then 
demonstrate that we understand our detector acceptance as a 
function of angle, and that any contributions from background 
are indeed negligible (Sec. IV C). 

To establish the detector effciency, a Monte Carlo sim-
ulation is used, which contains a detailed account of all 
detector elements, including the silicon barrel, and describes 
the interaction of the reaction products with the detector setup 
to the best of our knowledge. Required input parameters 
include the detector positions, thicknesses and resolutions, the 
dimensions of the target cell and the target gas distribution. 
Also included is the loss of detected deuterons due to reactions 
in the forward detector (based on the parameterized total 
deuteron breakup cross section [29,30]). The simulation code 
produces output with the same format as that of the actual 
events recorded during data acquisition; therefore it can be 
analyzed with exactly the same software. 

Elastic scattering events at random angles are processed 
by the Monte Carlo code and reconstructed with the same 
conditions as real events. The ratio between the number 
of reconstructed and generated events then constitutes the 
θ -dependent detector effciency ε(θ ). The relative cross section 
is obtained by multiplying the measured yields by −1(θ ). As 
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FIG. 7. Spin observables for p + d elastic scattering at Tp  = 135 MeV. The solid dots represent the results of this experiment. Statistical 
errors are shown; the overall normalization errors are listed in Table II. The open symbols show previous measurements (Sec. V C). The solid 
and dashed curves are two-nucleon force Faddeev calculations based on the CD-Bonn and the AV18 NN potential, respectively (Sec. VI B). 

a crosscheck, the relative pp elastic scattering cross section circles) and Sekiguchi et al. [3] (stars) are in serious dis-
can be determined from the data set obtained with the 1H2/2H2 agreement with each other in shape and magnitude. The 
gas mixture. It agrees well with the shape of the cross section shape of our cross section, in particular its forward/backward 
predicted from the SAID phase shift solution SP03. ratio, agrees well with the Ermisch data set, and is not 

Our data at 135 MeV are shown as solid dots in Fig. 9. compatible with the Sekiguchi measurement. We have thus 
Two existing measurements by Ermisch et al. [31] (open normalized our cross section to the Ermisch data. In the past 
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FIG. 8. Spin observables for p + d elastic scattering at Tp 

it has been argued that the minimum of the cross section is 
sensitive to three-nucleon forces [32]. For this reason, we 
also show in Fig. 9(a) Faddeev calculation based on the 
CDBonn NN potential before (solid line) and after (dashed 
line) the inclusion of the Tucson-Melbourne three-nucleon 
force. 

At 200 MeV (not shown) we have normalized our cross 
section to the data of Rohdjess et al. [33] at  θ = 26◦. The  

= 200 MeV. Otherwise, the caption of Fig. 7 applies. 

Rohdjess cross section is linked to p + p scattering by the 
use of an 1H2H gas target. With this normalization, our 
data are consistent at all angles with an older cross section 
measurement at 198 MeV [27]. 

We thus fnd that the shape of our cross section agrees well 
with existing data, without any correction for a background 
contribution. This supports our conclusion of Sec. IV C that 
background can be neglected. 
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FIG. 9. Differential cross section for pd elastic scattering at 
135 MeV. The relative cross sections of this experiment (solid dots) 
are normalized to the data by Ermisch et al. [31] (open circles). Also 
shown is another recent measurement [3] (stars), which is in confict 
with the other data. The solid line represents a Faddeev calculation 
based on the CD-Bonn NN potential; when the TM three-nucleon 
force is included, the dashed line results. 

VI. COMPARISON WITH THEORETICAL PREDICTIONS 

A. Faddeev calculations 

The role of Faddeev calculations of observables involving 
three nucleons has recently been summarized by Glöckle in 
a comprehensive review [34]. Given a specifc NN interaction 
as input, such calculations yield an exact solution of the three-
body problem. Due to advances in computing power it is now 
possible to include a suffcient number of partial waves to 
extend these calculations up to ∼200 MeV proton energy. 
Pion production is not included in these calculations. 

The input NN interaction is represented by a modern NN 
potential whose parameters have been adjusted such that all 
empirical knowledge of the NN interaction is reproduced 
as well as possible. Such potentials are usually based on a 
parametrized one-boson exchange model with phenomeno-
logical parts added, and have been developed over the last 
20 years. Following dramatic improvements in the past decade, 
modern potentials (including the so-called Bonn, Argonne and 
Nijmegen potentials I and II) yield a χ2 per datum of 1.0 to 
1.4 for p + p data up to 350 MeV, and 1.0 to 1.1 for n + p 
data in the same energy range. 

In this paper, we use Faddeev calculations that have been 
carried out by the Bochum-Cracow group [8], and are based on 
the following two NN potentials. The frst, so-called CDBonn 
potential [35] has 45 free parameters, adheres most closely 
to a meson-exchange picture and is thus quite nonlocal. The 
second, the AV18 potential [36], is weakly nonlocal, has 40 
free parameters and is more phenomenological than the CD-

Bonn potential. Both potentials are charge dependent (i.e., not 
the same for  p + p and n + p), and the parameters of both 
have been adjusted by comparing to the Nijmegen NN phase 
shift analysis [37] at energies below 350 MeV. 

The Faddeev calculations include the 3N partial wave states 
with total angular momenta of the two-nucleon subsystems up 
to jmax = 5, resulting in up to 142 partial-wave states at each 
3N system total angular momentum and parity. Convergence 
of observables for energies up to 200 MeV has been checked by 
comparing calculations with jmax = 5 and jmax = 6. Faddeev 
calculations ignore the Coulomb interaction. However, at our 
energies we expect Coulomb effects to be negligible, except 
perhaps at small angles. This is supported by experiment [38]. 
Thus, we assume that observables in n + d and p + d scatter-
ing are the same. On the other hand, Faddeev calculations are 
nonrelativistic and use nonrelativistic NN interactions. With 
increasing energy, relativistic effects become more important 
and may be responsible for some of the discrepancies between 
calculations and the data. 

B. Comparison of two-nucleon force predictions with the data 

Our measured analyzing powers and spin correlation 
coeffcients at 135 and 200 MeV are shown as solid circles 
in Figs. 7 and 8. Open symbols indicate the results of previous 
experiments (Sec. V C). The solid and dashed lines show 
calculations with the CD-Bonn and the AV18 NN potential, 
respectively. 

The ability of the calculations to account for the general 
behavior of all observables at both energies is quite impressive, 
especially since they were carried out before the data became 
available, and thus are true predictions. The difference between 
predictions of two potentials is generally small, as would 
be expected for NN potentials that have been adjusted to 
reproduce the NN database. 

Discrepancies between the calculations and the data are 
mostly confned to backward angles but may be sizeable down 
to θ = 40◦ , especially in the tensor analyzing powers. Even 
though relatively small, these discrepancies are the focus of 
the present research, since they represent the physics that is 
missing in the 2N Faddeev calculations. The favored candidate 
for this physics is a three-nucleon force (3NF). 

C. Inclusion of a three-nucleon force 

Most present day theoretical models of the 3NF are based 
on the exchange of two mesons with an intermediate nucleon 
excited state. There are two basic approaches. The frst restricts 
the intermediate state to a resonance and uses an additional, 
phenomenological, spin and isospin independent short-range 
part. An example is the Urbana IX force (UIX) [39]. The 
second approach is based on a parametrization of the π -N 
off-shell scattering amplitude and contains any intermediate 
state. A representative of the latter is the Tucson-Melbourne 
(TM) force [40]. Recently, The TM force has been criticized 
on the basis of chiral symmetry and a modifed force (TM ) 
has been constructed that avoids these diffculties [41,42]. 
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FIG. 10. (Color online) Difference between the present data at 135 MeV and the Faddeev calculation with the CD-Bonn potential. The 
effect of including the old or the new Tucson-Melbourne 3NFs is shown by the solid lines (TM) and the dashed lines (TM ). The dotted lines 
show the difference between calculations with the AV18 and the CDBonn potentials, both without a 3NF. 

All three forces mentioned above have been adopted for D. Comparison of 3NF predictions with the data 
insertion into Faddeev calculations [35], including angular The differences between our measurements and the 
momenta of the 3N system up 13/2 [8]. All theoretical 3NFs Faddeev calculation with the CD-Bonn potential are plotted 
contain adjustable parameters that are determined experimen- in Figs. 10 and 11, i.e., the calculation is the zero line. 
tally. In particular, the overall strength of the 3NF potential is The effect of including the old (TM) or the new (TM ) 
adjusted by varying the cutoff parameter � of the π -N form Tucson-Melbourne 3NFs is shown by the solid lines and the 
factor until the 3H binding energy is reproduced. The adjusted dashed lines, respectively. A comparison of these curves with 
cut-off parameter depends on the NN potential used [43]. the data is justifed if calculations with different NN potentials 
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FIG. 11. (Color online) Difference between the present data at 200 MeV and the Faddeev calculation with the CD-Bonn potential. Otherwise, 
the caption of Fig. 10 applies. 

agree with each other. To illustrate this, the difference between 
calculations with the AV18 and the CDBonn potentials, both 
without a 3NF, is shown as a dotted line. This difference is 
indeed generally small, but there are many cases where the 
variation between the two potentials competes in size with the 
3NF effects. 

As can be seen from Figs. 10 and 11, the two 3NFs agree 
with each other for some observables and in some angular 
regions (e.g., in Ad ), but in numerous cases the predictions with y 
the TM and the TM 3NF are quite different. Both sometimes 
improve the agreement with the data (e.g., inAd ), but equally y 
often this is not the case. Thus, neither 3NF is a successful 
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representation of the discrepancies between the p + d spin shows the measured observables versus the scattering angle, 
observables and Faddeev calculations without a 3NF. thus each pixel corresponds to one of our 868 data points. A 

In Fig. 12 we investigate the systematics of the performance pixel is colored black if the inclusion of a 3NF improves the 
of various 3NFs and underlying NN potentials. Each panel agreement with the data and gray if it does not. The top four 

(A) (B) 

(C) (D) 

FIG. 12. (Color online) Systematics of in-
cluding various three-nucleon forces. Each panel 
shows the measured observable versus the scat-
tering angle, thus each pixel corresponds to one 
of our 868 data points. A pixel is colored black if 

(E) (F) the inclusion of a 3NF improves the agreement 
with the data. The upper four panels are for 
135 MeV, the lower four for 200 MeV. The left 
and right columns are for the CD-Bonn and the 
AV18 2N force, respectively. The effect of three 
different 3N forces is shown. 

(G) (H) 
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panels are for 135 MeV, the lower four for 200 MeV. The left 
column is with the CD-Bonn NN potential (TM or TM ), the 
right with the AV18 (TM or UIX). It is interesting to note that 
there are no systematic differences between different regions 
in scattering angle, different 2N potentials, or different 3NFs. 

In summary, there is no indication that any of the 3NFs 
studied here consistently alleviates the discrepancies between 
the data and 2N Faddeev calculations, and thus represents the 
physics that is responsible for these discrepancies. 

VII. CONCLUSIONS 

We have measured all analyzing powers, and all but two 
spin correlation coeffcients for p + d elastic scattering at 
135 and 200 MeV. The experiment was motivated by the 
availability of computationally exact Faddeev calculations of 
these observables. These calculations are based on a given, 
phenomenological 2N potential. 

The Faddeev calculations shown in this paper were carried 
out prior to this experiment. We fnd that the 2N calculations 
predict the general features of all observables impressively 
well. In other words, the absolute differences between data and 
the two-nucleon force calculations are relatively small, mostly 
confned to backward angles but in some cases sizeable down 
to θ = 40◦ . Statistically, the discrepancies are relatively large 
owing to the high precision of the data. If the 2N input to the 
calculation is suffciently well defned, such that it uniquely 
describes how nature would behave if there were only 2N 
forces, the differences between these calculations and the data 
are a manifestation of additional physics. Our measurement 
then would provide a testing ground for the spin dependence 
of this missing physics. 

Many believe that the prime candidate for the missing 
physics is a three-nucleon force. It is possible to include 
theoretical models of three-nucleon potentials in the Faddeev 
calculations. We have investigated the ability of three different 
three-nucleon forces to account for the discrepancies between 
data and 2N calculations. We fnd that for some observables 
at some angles the inclusion of a 3NF improves the agreement 
with the data, but often the agreement also gets worse. When 
there is an improvement, it does not depend systematically on 
the scattering angle, or the energy, or the choice of a particular 
3NF. We thus conclude that existing 3NFs are not successful 
in explaining the discrepancy between the spin observables 
presented here and the corresponding 2N calculations. Thus, 
recent claims that local improvements of the calculation 
resulting from inclusion of a 3NF constitute evidence for such 
a 3NF must be met with caution. For example, in Ref. [7], that 
claim is based on a (fortuitous) choice of a single observable 
(Cy,y) in a limited angular range (the data of Ref. [7] are  in  
agreement with the present measurement, but the conclusion 
is not). 

We have also resolved a serious discrepancy between 
two recent measurements of the differential cross section at 
135 MeV (Sec. V D). 

Note added in proof. The published version of this paper is 
the originally accepted version as of 21 July 2004. 
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a careful reading of the manuscript. This work has been 
carried out under NSF grant PHY-0100348, and DOE grant 
FG02-88ER40438. 

APPENDIX 

In Sec. II B we have discussed the derivation of the spin-
dependent cross section for scenario V90. Here we give the 
corresponding expressions that apply in case of the other two 
scenarios used (Sec. IV A). 

For scenario L90, the beam polarization Q̂ is longitu-
dinal (βQ = 0). For sideways spin alignment axis Ŝ (βP = 
π/2,� P = 0), we then obtain 

σ/σ0 = 1 − 3
2 P  A

d
y sin ϕ − 1 P   [Azz − A cos 2ϕ]4 

3+ P  QCx,z cos ϕ − 1 P   QCxy,z sin 2ϕ, (A1)2 2 

with a vertical spin alignment axis (βP = π/2,� P = π/2), 

3σ/σ0 = 1 + 2 P  A
d
y cos ϕ − 1 P   [Azz + A cos 2ϕ]4 

3 1+ P  QCx,z sin ϕ + P   QCxy,z sin 2ϕ, (A2)2 2 

and with a longitudinal spin alignment axis (βP = 0), 

1 3σ/σ0 = 1 + 2 P   Azz + 2 P  QCz,z. (A3) 

For scenario V45, the beam polarization was vertical, and 
the longitudinal and one of the transverse guide felds was 
energized simultaneously. The subcycle covered all eight pos-
sible orientations of the spin alignment axis. When combining 
the transverse with the longitudinal feld, the following four 
spin alignment axis directions result 

 � � � � �
3π π 
4 , 0 4 , 0 

(βP ,� P ) = �
3π 

� �  
π 

� . (A4) 
, π  , π4 4 

The corresponding four cross sections are the same except 
for the signs of the terms. The signs in the following equation 
are shown as matrices that correspond to the directions of 
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Eq. (A4) When combining the vertical with the longitudinal guide feld, 

σ/σ0 = 1 
+ +
+ + QAp cos ϕy 

− −  
+ +

√ 
3 2 

P  A
d sin ϕ y4 

the following four spin alignment axis directions result: � � �  � 
3π π π π 
4 , 2 4 , 2(βP ,� P ) = � � �  � .

3π 3π π 3π 
(A6) 

× 
− +  
+ −  

1 
P   Axz cos ϕ 

2 
+ +  
+ +  

1 
P   A 

8 
cos 2ϕ 

4 , 2 4 , 2 

and the corresponding four cross sections are 

× 
+ +  
+ +  

1 
P   Azz

8 
+ +  
− −

√ 
3 2 

P  Q{Cx,x − Cy,y}
8 

σ/σ0 = 1 
+ +
+ + QAp cos ϕy 

+ +  
− −

√ 
3 2 

P  A
d cos ϕ y4 

× cos 2ϕ 

− −  × − −  

− +  × + −  

√ 
− +  3 

P  QCz,x sin ϕ− + 4 

1 1 
P   Q Cxy,x − C �,y − Czz,y

8 2 

1 
P   Q{Cxz,y + Cyz,x} cos 2ϕ 

4 

cos ϕ 

− +  1 − − 1× P   Axz sin ϕ P   A cos 2ϕ+ −  2 − − 8√
+ + 1 + + 3 2× P   Azz P  Q({Cx,x + Cy,y}+ + 8 − − 8 √ 

− +  3 − {Cx,x − Cy,y} cos 2ϕ) P  QCz,x sin ϕ− + 4 

+ + 1 1× P   Q Cxy,x − C �,y + Czz,y cos ϕ + +  8 2

× 
+ +  
+ +  

1 
P   Q

8 

1 
Cxy,x + C

2 
�,y cos 3ϕ × 

− +  
+ −  

1 
P   Q{Cxz,y + Cyz,x} sin 2ϕ 

4 

× 
− +  
+ −  

1 
P   Q{Cxz,y − Cyz,x}. 

4 
(A5) × 

− −  
− −  

1 
P   Q

8 

1 
Cxy,x + C

2 
�,y cos 3ϕ. (A7) 
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