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In a kinematically complete experiment we have measured the two analyzing powers and the fve spin 
0correlation coeffcients of the reaction pW pW →ppp as a function of all fve parameters of the three-body fnal 

state for bombarding energies between 325 and 400 MeV. The data are in disagreement with the theoretical 
predictions available at this time. Below 400 MeV, fewer than a dozen complex partial-wave amplitudes are 
likely to be signifcant, and it is expected that the present experimental information constrains these ampli-
tudes. We also describe the formalism for an expansion of the spin observables into a complete set of angular 
functions and use this to completely characterize the polarization information obtainable from reactions with 
polarized spin-1/2 collision partners and a three-body fnal state. 

DOI: 10.1103/PhysRevC.63.064002 PACS number~s!: 24.70.1s, 24.80.1y, 25.10.1s, 29.20.Dh 
an
 a
tio
f 
e

en
c
o
tr

e
u

f t
e

st
he
 e
a

se

io

Un

-

spe-
t of 
ob-
r 
-
of 
that 
ross 
stor-
 
ned 

rst 
uch 

 and 
 
es-
een 
 and 
d ac-
n be 
the 
mi-
red 
g en-
 out 
 is a 
f a 

tial 
I. INTRODUCTION

The behavior of a system consisting of two nucleons 
a pion is basic to classical nuclear physics. It is thus
important task to try to relate the process of pion produc
in a nucleon-nucleon (NN) collision to our understanding o
the NN interaction or to constraints given by basic symm
tries, or, ultimately, to a model that features the constitu
of nucleons and mesons. The theoretical task was expe
to be relatively simple at energies very close to thresh
because only a single angular momentum channel con
utes. 

Triggered by the advent of new cross section data clos
threshold, there has been a furry of theoretical activity d
ing the past fve years devoted to an understanding o
lowest partial wave ~see Sec. V A for more details on th
current status of the theory!. Even though this work is 
going on, it is clearly important to also investigate the hig
partial waves which become active as the bombarding
ergy is increased. In order to identify the role of individu
partial waves, the use of polarized collision partners is es
tial. 

Each of the three periods of activity in the study of p
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production in the nucleon-nucleon system is related to 
cifc technical advances. The frst was the developmen
accelerators with suffcient energy, which led to the frst 
servation of the pp→ppp0 reaction @1# just a few years afte
the pion was discovered @2# and 17 years after it was pre
dicted by Yukawa @3#. The second was the construction 
meson factories with intense, well-defned proton beams 
made possible accurate and kinematically complete c
section measurements, and the third was the advent of 
age rings with electron-cooled beams and internal targets@4#, 
which started to operate in the late 1980s, and which ope
up the near-threshold region for experimental study. 

Measurements of pion production in pp collisions beneft 
from storage ring technology mainly in two ways. The f
concerns the use of windowless internal gas targets. S
targets put only hydrogen gas into the path of the beam
make it possible to measure small pp→ppp0 cross sections
very close to threshold with little contamination from und
ired reactions. In addition, the amount of material betw
the target volume and the detector can be made small,
the momenta of both outgoing hadrons can be measure
curately. Thus, the complete kinematics of each event ca
determined. Internal targets must be thin in order for 
cooling process to keep up with target heating, but this li
tation is offset by the intensity of the accumulated, sto
beam. The second unique advantage of the storage rin
vironment concerns polarized atomic gas targets. It turns
that the maximum target thickness that can be achieved
good match for the target thickness requirements o
medium-energy storage ring. 

Close to threshold the number of participating par
02-1 ©2001 The American Physical Society 
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FIG. 1. Coordinate frame. The z axis is along the beam direc
tion, the y axis is pointing up, and the x axis completes the right

handed coordinate system. The direction of a vector rW is given by a 
polar angle u and an azimuthal angle f. 

waves is small. In fact, at energies below 320 MeV, only 
partial wave is signifcant ~the Ss partial wave with the an
gular momenta of the fnal-state pp pair as well as the pion
equal to zero!. In one of the frst nuclear physics experim
with a stored, cooled beam @5#, the total cross section in th
energy region was measured, revealing a serious disa
ment with the theory at that time ~see Sec. V A!. For bom
barding energies larger than 320 MeV, additional par
waves come into play but their number is still relative
small since below about 400 MeV fnal-state angular m
menta larger than one should be unimportant. With this l
tation, it is possible to provide an expression for the m
general dependence of any observable on the angles o
three outgoing particles. For the present study, this poin
crucial for two reasons. First, we use the angular depend
given by these expressions to formulate a strategy to o
and present the information available from an experim
with polarized beam and target by defning an appropriate
of single-valued ‘‘observables’’ that characterize the co
plete fve-dimensional phase space. Second, it allows u
carry out an analysis of the data in terms of the coeffci
that appear in these expressions. The resulting coeffc
completely parametrize the polarization observables of
reaction and constrain participating amplitudes individua
This constitutes a powerful and detailed test of any theo

Prior to this experiment, the world’s polarization data 
the reaction pp→ppp0 below 400 MeV consisted of jus
two analyzing power measurements @6,7#. In this paper we
describe a complete measurement of this reaction cove
most of the available phase space, carried out with a p
ized beam on a polarized target at bombarding energie
tween 325 and 400 MeV. All polarization observables 
lowed by parity conservation have been measured. Sinc
are dealing with a three-body fnal state, these observa
depend on fve kinematic variables. Section II of this pape
concerned with the defnition of polarization observables 
their dependence on the kinematics of the fnal state. Se
III contains a description of the apparatus, an account o
acquired data, and a description of the method used to ex
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FIG. 2. The momenta and of the pp→ppp0 fnal state in the
center-of-mass system. Particle numbers 1 and 2 are the two

tons with momenta b1 and b2. The proton momentum in the pp restW W 

system is given by pW 5(bW 
12bW 

2)/2 and the center-of-mass mome

tum of the pion ~3! by qW 52(bW 
11bW 

2). 

the observables from the measured quantities. In Sec. 
scheme is introduced to completely map out the spin de
dence of the reaction everywhere in the fve-dimensio
phase space, and results are presented. Finally, Sec.
devoted to a discussion of the present status of the theo
comparison of some of the data to recent calculations, a
list of conclusions from the present experiment. 

II. POLARIZATION OBSERVABLES 

A. Basic defnitions 

In a reaction with two outgoing particles it is customary
relate the coordinate frame to the reaction plane. Wit
three-body fnal state there is no such distinguished plan
we use a Cartesian coordinate frame that is fxed in sp
The z axis is along the beam direction, the y axis is vertical, 
pointing up, and the x axis completes the right-handed coo
dinate system. The polar angle u and azimuthal angle f, as
defned in Fig. 1, are used to specify the direction of 
vector. 

In this experiment we detect the energy and direction
the two fnal-state protons of the reaction pp→ppp0. Let 
the center-of-mass momentum of the two protons be bW 

1 and 
Wb2. To describe the fnal-state kinematics we defne the 
menta pW and qW , where pW 5(bW 

12bW 
2)/2 ~the proton momentum

in the pp rest system! and qW 52(bW 
11bW 

2) ~the center-of-
mass momentum of the pion; see Fig. 2!. Five indepen
parameters are needed to describe the fnal state, namel
directions p̂ and q̂ and an ‘‘energy-sharing’’ parameter e, 
which we will later defne as the kinetic energy of the t
fnal-state protons in their rest system @see Eq. ~21!#. All fve 
parameters follow from the observation of the two proto
For brevity, we sometimes denote the set $up ,wp ,uq ,wq ,e% 
by j. 

The largest possible value of the pion momentum is gi
by ~we set c5\51) 
qmax5 
1 

A@s2~2mp1mp!2#@s2~2mp2mp!2#, ~1! 
2As 
2-2 
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where As is the total center-of-mass energy, and mp and mp 
are the masses of the proton and the pion, respectively
stead of the bombarding energy, one often quotes the pa
eter 

h5qmax /mp , ~2! 

which vanishes at threshold. The term ‘‘near thresho
loosely corresponds to the energy region with h,1, i.e., 
below 400 MeV. 

The polarization of an ensemble of spin-1/2 particles m
be described by the expectation value of the th
component Pauli spin operator ~see, e.g., Ref. @8#!. In the
following, we denote the polarization of the beam and 
target by the two vectors PW 5(Px ,Py ,Pz) and QW 
5(Qx ,Qy ,Qz), respectively. 

B. Defnition of observables 

We abbreviate the differential cross section for the re
tion, initiated by a polarized beam on a polarized target,

ds~up ,wp ,uq ,wq ,e,PW ,QW ! 
s~j,PW ,QW ![ , ~3!

dVpdVqde 

and write s0(j) for the cross section that would be measu
without polarization. In terms of the so-called Cartesian 
larization observables, the spin-dependent cross section
comes 

s~j,PW ,QW !5s0~j!ŁF11( PiAi0~j!1( QjA0 j~j! 
i j 

j! . ~4!1( PiQjAi j ~ G
i , j 

Here, i and j stand for x, y, or  z and the sums extend over a
possibilities. The resulting 15 polarization observables 
clude the beam analyzing powers Ai0, the target analyzing
powers A0 j , and the spin correlation coeffcients Ai j  . It  is
convenient to defne the following combinations of spin c
relation coeffcients: 

AS~j![Axx ~j!1Ayy ~j!, ~5a! 

AD~j![Axx ~j!2Ayy ~j!, ~5b! 

AJ~j![Axy ~j!2Ayx ~j!. ~5c! 

The 15 polarization observables of Eq. ~4! are not inde-
pendent. For instance, Ax0 and Ay0 are equivalent becaus

ˆthe radiation pattern observed with a beam polarized aloy 

is the same as when the beam is polarized along x̂, except for 
a rotation by 90° around the z axis. This and other, similar
‘‘rotational’’ equivalences are given by @9# 

Ax0~up ,wp ,uq ,wq!5Ay0~up ,wp1p/2,uq ,wq1p/2!, 
~6a! 
06400
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Ayz ~up ,wp ,uq ,wq!5Axz ~up ,wp2p/2,uq ,wq2p/2!, 
~6b! 

Axy ~up ,wp ,uq ,wq!1Ayx ~up ,wp ,uq ,wq! 

5AD~up ,wp2p/4,uq ,wq2p/4!. ~6c! 

If the two particles in the initial state are identical, measu
ments with interchanged beam and target polarization s
must be equivalent. It is straightforward to show that if pa
is conserved, the identity of the particles in the initial st
requires 

Ai j ~up ,wp ,uq ,wq!5Aji ~p2up ,wp1p,p2uq ,wq1p!. 
~7! 

Applying the relations in Eqs. ~5!–~7!, we fnd that for the
reaction pp→ppp0 there are the following seven indepe
dent polarization observables: 

Ay0~j!, Az0~j!, AS~j!, Azz ~j!, Axz ~j!, AD~j!, 

AJ~j!. ~8! 

The fact that the two nucleons in the fnal state are 
identical requires that all observables must be invariant
der the transformation pW →2pW . This means that the phas
space of the fnal state has two identical halves. In the an
sis of the present experiment this is taken into accoun
always labeling the protons 1 and 2 in such a way tha
<up<p/2. Consequently, results are presented only forup 
in this range, and when calculating a total cross section
up integral extends only from 0 to p/2. 

For reactions with two colliding spin-1/2 particles, o
can defne three total cross sections, two of which depen
the spin. These total cross sections are related to the ob
ables in Eq. ~8! by 

s tot5E s0~j!dVpdVqde, ~9a! 

DsT52E s0~j!AS ~j!dVpdVqde, ~9b! 

DsL522 E s0~j!Azz ~ j!dVpdVqde, ~9c! 

where dV5d cos udw, and the integration extends over 
<uq<p, 0<up<p/2 and 0<e<emax . The possible value
for DsL /s tot and DsT /s tot ranges between 22 and 12. 

C. Angular momentum 

1. Partial waves 

Let us denote the angular momentum of the colliding p
tons by l, their channel spin by si , and the total angula
momentum by J. In the fnal state, angular momentum, cha
nel spin, and total angular momentum of the proton pair
given by l p , sf , and j, respectively, and the angular mome
tum of the ~spinless! pion, relative to the center of mass, b
l q . This set of quantum numbers, denoted collectively b
2-3 
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a5$ l ,si ,J,l p ,sf , j ,l q%, ~10! 

fully identifes the amplitudes Ua for transitions from a
given initial to a given fnal state. These amplitudes are fu
tions of the energy-sharing parameter e and the total energy
The quantum numbers in Eq. ~10! are constrained by angula
momentum and parity conservation as well as by the P
principle. Because close to threshold it is realistic to ass
that l p and l q are either 0 or 1, the possible choices for 
angular momentum in the fnal state are then (l p ,l q) 
5(0,0), ~1,0!, and ~1,1!, or  Ss, Ps, and Pp. In  pp→ppp0, 
there are no Sp fnal states permitted by the usual symme
constraints of parity and angular momentum conserva
and the Pauli principle. A list of all transitions with the
constraints can be found in Table I. For completeness
have included in Table I the transitions with l p 5 2, l q50 
~Ds! and l p50, l q52 ~Sd!. Since these amplitudes can int
fere with the important Ss amplitude, their contribution
might be non-negligible @10#. The list in Table I follows the
conventional notation 2si11l J→2sf11l p , j ,l q where the spec
troscopic notation, (l , l p)5S, P, D, F, . . .  and  l q5s, p, d, 
f . . . is used. 

2. Angular distributions of the observables 

Since close to threshold only relatively few amplitud
0contribute to pp→ppp , it is feasible to expand the obser

ables in terms of angular momentum. In the formalism 
use, the expansion functions are products of two sphe
harmonics with arguments p̂ and q̂, and the expansion coe
fcients are a sum of terms, where each term contains
product of two amplitudes UaU* times an angular-a8 
momentum coupling factor. The coupling factor is oft
zero, refecting the constraints arising from conserva
laws and antisymmetrization. For instance, one fnds tha
amplitudes can be arranged into the two groups ~Ss, Sd, Ds! 
and ~Ps, Pp!, and only amplitudes within one group c
interfere with each other. The details of such an expan
into partial waves are given in the Appendix. 
06400
TABLE I. Angular momentum quantum numbers for the par
0waves of the reaction pp→ppp . The Sd and Ds amplitudes have

been included for completeness sake; the present experiment

c-no evidence for their signifcance. 

Type 2si11l J→2sf11l p j,l q

uli Ss 3 P0→1S0 ,s 
e Ps 1S0→3 P0 ,s 

e 1D2→3 P2 ,s 
Pp 3 P0→3 P1 ,p

3 P2→3 P1 ,p
y 3 P2→3 P2 ,p
n 3F2→3 P1 ,p 3F2→3 P2 ,pe 

3 P1→3 P0 ,p
3 P1→3 P1 ,p-
3 P1→3 P2 ,p
3F3→3 P2 ,p

Sd 3 P2→1S0 ,d 
3F2→1S0 ,d

Ds 3 P2→1D2 ,s 
3F2→1D2 ,s 

s Based on this partial-wave expansion, we have dedu
equations that contain the dependence of the observabl
e the four angles that describe the fnal-state kinematics. 
al availability of such a set of equations is of crucial imp
tance for the present work because it shows us how to 
lyze the measurement in view of the complexity of a fthe 
dimensional phase space, and it guides us in defnin
reasonable and complete set of observables that desc
 this complexity. It will be seen later that these equati
n provide a suffcient framework, since they are able to rep
he duce the measured angular distributions. The following se
equations represents the general angular dependence 
 spin-averaged cross section s0(j) and the spin dependen
on cross sections s0(j)Ai j (j) in terms of the real coeffcients E

i j  i jFk , Gk , Hk , I, and K. Note that we use Dw[wp2wq : 
00 00 2 00 2 00 2 2s0~j!5E1F11H0 1~ H1 1I !~ 3 cos uq21!1~H2 1F21K !~3 cos up21!1H3 ~3 cos uq21!~3 cos up21! 

00sin 2upsin 2uqcosDw1H5
00sin2 sin2 cos2Dw, ~11a!1H4 up uq 

y0 y0 2 y0 y0 2s0~j!Ay0~j!5@$G1 1G2 ~3 cos up21!%sin uq1$H1 1I y01H2 ~3 cos up21!%sin 2uq#cos wq 

y0 y0 y0 21@H3 1Ky01G3 cos uq1H4 ~ 3 cos uq21!#sin 2up cos wp 

1@Gy 
4
0sin uq1Hy 

5
0sin 2uq#sin2upcos~2wp2wq!1H6 

y0sin 2upsin2uqcos~2wq2wp!, ~11b! 

S S 2 S 2 S 2 2s0~j!AS~j!52~E2F1!1H0 1~H1 12I !~ 3 cos uq21!1~H2 22F212K !~3 cos up21!1H3 ~ 3 cos up21!~3 cos uq21! 

1H4 
Ssin 2upsin 2uq cos Dw1H5 

Ssin2upsin2uq cos 2Dw, ~11c! 

zz zz 2 zz 2 zz 2 2s0~j!Azz ~j!52E2F11H0 1~ H1 2I !~3 cos uq21!1~H2 2F22K !~ 3 cos up21!1H3 ~ 3 cos up21!~3 cos uq21! 

1H4 
zzsin 2upsin 2uq cos Dw1H5 

zzsin2upsin2uq cos 2Dw, ~11d! 
2-4 
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D 2 D 2s0~j!AD~j!5@H1 
D1H2 ~ 3 cos up21!#sin2uqcos 2wq1@H3 

D1H4 ~3 cos uq21!#sin2up cos 2wp 

1H5 
Dsin 2upsin 2uq cos~wp1wq!, ~11e! 

xz xz 2 xz1I xz1H2 
xz 2s0~j!Axz ~j!5@$G1 1G2 ~ 3 cos up21!%sin uq1$H1 ~3 cos up21!%sin 2uq#cos wq 

xz1Kxz1Gxz 
3 

xz 21@H3 cos uq1H4 ~3 cos uq21!#sin 2up cos wp 

1@G4 
xzsin uq1H5 

xzsin 2uq#sin2up cos~2wp2wq!1Hxz 
6 sin 2upsin2uq cos~2wq2wp!, ~11f! 

s0~j!Az0~j!5@Hz 
1
0sin 2uq1Gz 

1
0sin uq#sin 2up sin Dw1Hz 

2
0sin2upsin2uq sin 2Dw, ~11g! 

s0~j!AJ~j!5G1 
Jsin 2upsin uq sin Dw. ~11h! 
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Gk
i jThe letter symbols E, Fk , , and Hi j

k distinguish terms
with (Ss)2, (Ps)2, (PsPp), and (Pp)2 angular momenta in
the fnal state according to the defnitions given in Table
and II. The superscript associates the coeffcient with a g
observable, and the subscript enumerates multiple oc
rences of the same symbol within a given observable
coeffcient without a superscript appears in more than 
observable. The coeffcients I, K, I i j , and Ki j  are associated
with SsSd or SsDs interference terms. We note that th
always occur in conjunction with an i j  term. Thus, theHk 
angular dependence alone does not provide suffcient in
mation to separate the d-wave contributions. All contribu
tions of the amplitudes listed in Table I have been taken 
account, except those that correspond to a (Ds)2 and (Sd)2 

fnal state. 
The physics of the reaction is contained in the value

i j  i jthe coeffcients E, Fk , Gk , Hk , I, and K. We will determine
these values as a way to parametrize the results of the 
surement. These coeffcients are bilinear sums of the rea
amplitudes. The corresponding relations between the co
cients and the amplitudes are known, but often complica
They can be derived from the partial-wave expansion 
scribed in the Appendix. Thus, in principle, it is possible
construct a set of amplitudes that best describes the pr
data; however, this task involves a nonlinear ft with a n
diagonal error matrix and possible ambiguities, and is 
yond the scope of this paper. 

TABLE II. Partial waves according to the fnal-state angu
momenta. The column labeled L lists the symbol used in Eqs. ~11! 
for a parameter of this type. The last column shows the power h 
for the expected dependence on bombarding energy for the 
where neither l p 8p 

Final-state angular momenta 

nor l is zero. 

hmwL(e)l p l q l l L8p q8 

~Ss!2 0 0 0 0 E qŁpŁ f (e) de -
(Ps)2 1 0 1 0 F qŁp3 de h6 

PsPp 1 0 1 1 G q2
Łp3 de h7 

(Pp)2 1 1 1 1 H q3
Łp3 de h8 

SsSd 0 0 0 2 I q3
ŁpŁ f (e) de -

SsDs 0 0 2 0 K qŁp3
ŁAf (e) de -
06400
Equations ~11! explicitly depend on the four angles up , 
wp , uq , and wq , while the energy-sharing parameter e is 

 I contained in the coeffcients. A discussion of the energy
en pendence is given in Sec. IV E. 
ur- When calculating the value of a polarization observa
A from Eqs. ~11!, one has to evaluate the ratio Ai j (j) 
ne 5s0(j)Ai j (j)/s0(j), and an overall normalization of a
terms in these equations cancels. Here, we choose to m
 ply all coeffcients by 8p2/s tot . This makes the coeffcient
dimensionless. The spin-averaged total cross section is 
an incoherent sum of the partial total cross sectir-

00s(Ss)/s tot5E, s(Ps)/s tot5F1, and s(Pp)/s tot5H0 , 
to involving the three fnal states with (Ss)2, (Ps)2, and (Pp)2, 
and 

of E1F11H00
0 51. ~12a! 

ea-The spin-dependent total cross sections are then given 
ion 
ff- SDsT /s tot522E12F12H0 , ~12b!d. 
e-

zzo DsL /s tot52E12F122H0 . ~12c! 
ent 
- It should be noted that not all coeffcients are indep

e-dent. For instance, we know from the partial-wave anal
~see the Appendix! that for m50, . . . ,5,  

r 00 S zzH 5H 1H ~12d!m m m

 
ses holds. Combining Eqs. ~12b!–~12d! one easily derives the
important relation 

1 DsT 1 DsL
11 1S DPs!s~ 

. ~13!5 
4 s tot 2 s tots tot 

This relation, which holds for pp→ppp0, allows one to
determine, in a model-independent way, the total strengt
the reaction going to a Ps fnal state directly from the mea
sured total cross sections. This measurement of a partia
wave has been presented in an earlier publication @11#, where 
the relation given in Eq. ~13! appears without proof. 
2-5 
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rod-
TABLE III. Bombarding energies used in this experiment, the h parameter @Eq. ~2!#, and the upper bound
emax on the energy-sharing parameter @Eq. ~21!#. Also listed are the accumulated luminosities and the p
ucts of beam and target polarization for the two phases of the experiment ~see Sec. III B!. 

Run A Run B 

Energy h emax *L dt  PyQ *L dt  PxQ PyQ PzQ 
~MeV! ~MeV! (nb21)  (nb21) 

325.6 0.560 21 2.163 0.456 ~3! 3.0 0.059 ~2! 0.333 ~2! 0.296 ~3! 
350.5 0.707 33 0.901 0.342 ~4! 1.3 0.053 ~3! 0.316 ~3! 0.267 ~5! 
375.0 0.832 44 3.024 0.514 ~4! 4.1 0.041 ~2! 0.333 ~2! 0.266 ~4! 
400.0 0.948 55 0.831 0.526 ~6! 1.1 0.039 ~4! 0.289 ~4! 0.203 ~8! 
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III. MEASUREMENTS 

A. Apparatus 

The experiment was carried out with the Indiana Coo
storage ring. A detailed description of the apparatus has 
presented previously in a technical paper @12#. In the follow-
ing, we give an abbreviated description of the experime
setup, pointing out features that are especially importan
appreciating the benefts and limitations of the technique 
ployed. 

1. Beam 

A polarized 197 MeV proton beam from the IUCF cyc
tron was accumulated in the Cooler ring, resulting in orbit
currents of 100–200 mA. The energy of the stored beam w
then ramped to the desired value ~for a list of energies, se
Table III!. The beam energy was known to better than 
keV, and the polarization of the beam varied between 0
and 0.70. 

The experiment was conducted in two phases. During
frst phase, the beam polarization was vertical ~along ŷ), 
while in the second phase nonvertical polarization was u
The latter is achieved with two spin-rotating solenoids. Th
feld is held fxed during acceleration. The feld integral
these solenoids is limited, partly by the current limit of 
solenoid, partly by diffculties in adjusting the ring optics
compensate for the additional focusing. The consequenc
this limitation is that purely longitudinal beam polarizati
cannot be achieved for beam energies larger than 200 M
Instead, for the second phase of the experiment, the a
polarization direction is about PW /P5(0.12,0.75,0.65), some
what depending on beam energy ~for actual values, see Tab
III!. 

The flling and ramping process takes 1–2 min, follow
by 5–8 min of data taking. This beam cycle is then repea
The sign of the beam polarization is changed every cyc

2. Target 

The stored beam passes through a target cell that con
of an open-ended 12 mm diameter cylindrical tube c
structed from 25 mm aluminum foil. The tube is 25 cm long
the center of the cell defnes the origin of the z axis. Joined to
the side of this tube, at z50, is a similar ‘‘feed’’ tube that is
oriented towards the incident beam of polarized atoms. 
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target cell is supported by the end of the feed tube. I
possible to remotely adjust the cell position relative to 
stored beam, in order to minimize the overlap between
beam halo and the cell wall. An atomic beam source @13# 
delivers the polarized hydrogen atoms. This source prod
a beam of about 1 cm diameter with a fux of abou
31016 atoms per second in a pure spin state with a nuc
polarization of about Q50.75. The role of the target cell i
to improve the utilization of the source output. The cell
coated with Tefon, which practically eliminates depolariz
tion of the atoms during wall collisions. The total thickne
of the target is a few times 1013 atoms/cm2. The density of
the target is determined by the gas fow through the c
decreasing linearly from a maximum in the cell center
near zero at the open ends. The polarization direction is
lected by a magnetic guide feld of a few gauss in the re
of the target. This feld is generated by coils exterior to 
scattering chamber, and can be oriented in the 6x, 6y, and 
6z directions. It has been shown @14# that the magnitude o
the target polarization does not vary signifcantly when 
polarization direction is changed, and in the following 
assume Q5Qx5Qy5Qz for the target polarization. During
data acquisition the direction of the target polarization
changed every 2 s. 

Internal polarized targets of this kind are pure and 
susceptible to radiation damage, and they offer the poss
ity of rapidly changing the polarization direction. 

3. Detector 

The purpose of the detector is to measure the direct
and energies of the two outgoing protons. This is acc
plished with a stack of scintillators and wire chambers t
are arranged as shown in Fig. 3. The directions of the 
outgoing protons are determined by a set of four plane
wire chambers, and the ‘‘E’’ and the ‘‘K’’ scintillator array
measure the energies of the protons. 

The combined thickness of the E and the K detec
planes is suffcient to stop the protons from the pp→ppp0 

reaction for up to 400 MeV bombarding energy. The lig
from both planes is added and then converted to the en
of the stopped particle using a phenomenological expres
for the light response, and a correction for the positi
dependent light collection effciency. The angular cover
of the detector depends on where along the target cell 
the event occurs. Seen from the center of the cell, the d
2-6 
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FIG. 3. Detector system to detect the two outgoing protons.
scintillators E and K measure energies and the wire chambers 
and WC2 directions. The scintillator V vetoes background ev
containing energetic charged particles. The four scintillators S 
vide a concurrent measurement of pp elastic scattering near u lab 

545° as a monitor for beam and target polarization. For m
details see Sec. III A 3. 

tor stack subtends a cone with a half-angle of 35°, with a
hole in the center that is required to admit the beam pipe
the circulating beam. This hole is responsible for most of
departure of the detector acceptance from 100%. The co
quences of incomplete acceptance are discussed in Sec.

The wall of the vacuum chamber just downstream of 
target consists of a 0.18-mm-thick, stainless steel window
1.5-mm-thick scintillator ~‘‘F’’ in Fig. 3!, immediately fol-
lowing this window, provides a start signal for a time-
fight measurement for particle identifcation, and elimina
events originating in the beam pipe downstream of th
detector. 

The E detector is divided into eight segments. The trig
for processing an event is a coincidence between the F
tector and at least two segments of the E detector. A 
issued by the last scintillator in the stack ~‘‘V’’ in Fig. 3! 
removes events where at least one particle is not stopp
either the E or the K scintillator, and thus are not from p
production. 

Concurrent with the acquisition of pp→ppp0 events, pp 
elastic scattering is observed near u lab545 ° by four scintil-
lators ~labeled ‘‘S’’ in Fig. 3!. For elastic scattering events
coincidence between two opposite detectors is required.
ticles reaching the S detectors traverse the frst set of 
chambers ~‘‘WC1’’ in Fig. 3!. A coplanarity condition and
the known angle between the two protons provide a c
selection of pp elastic events. 

B. Acquired data 

The experiment has been conducted in two phases. I
frst ~called ‘‘run A’’! the beam polarization was vertic
~along or opposite the y axis! and the target polarization wa
alternated in 2 s intervals between four directions ~along or 
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FIG. 4. Missing-mass spectrum of the pp→ppp0 reaction at 
375 MeV. The dashed line shows the normalized background s
obtained with a N2 target. 

opposite the x axis or the y axis!. Thus, data were accum
lated with eight combinations of beam and target polar
tion (Pn , Qm), namely, (6Py , 6Qx) and (6Py , 6Qy). 
Run A, which took place in the fall of 1997, was thus limit
to observables that are accessible with only transverse p
ization. 

In the second phase ~called ‘‘run B’’!, spin rotators were
employed to generate nonvertical beam polarization ~see 
Sec. III A 1!. In this case, the beam polarization was a s
of three components (Px , Py , Pz), and the target polariza
tion was alternated between the six directions 6Qx , 6Qy , 
and 6Qz , giving rise to 12 different spin states (6PW , 
6QW ), (6PW , 6QW ), and (6PW , 6QW ). Run B was carriedx y z 
out in the spring and fall of 1998. All possible analyzi
powers and spin correlation coeffcients were measured

During both runs data were acquired at the beam ene
325, 350, 375, and 400 MeV. The respective integrated
minosities, together with the values for beam and target
larization, are listed in Table III. 

C. Measured yields 

1. Selecting the pp\ppp0 events 

Events of interest are selected off line by requiring t
both particles be identifed as protons, that their wire ch
ber tracks be consistent with the patterns of responding 
ments in the various scintillator arrays, and that the origin
the event be in the target region. For each event the ma
the third, unobserved particle is calculated from the fo
momenta of the two protons. An example of a missing m
spectrum is shown in Fig. 4. To accept an event, its mis
mass has to be close to the mass of a neutral pion. 

The amount of background under the pion mass peak
ies with bombarding energy but is never larger than 1
This background is caused by reactions of protons with
aluminum cell walls and with impurities in the target g
Monte Carlo studies show that only reactions with three
more protons in the fnal state contribute signifcantly wh
2-7 
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(p,2p) reactions are unimportant. The shape of the ba
ground is determined from a separate measurement w
the hydrogen in the target cell is replaced by N 2. This mea-
surement results in a missing-mass spectrum that clo
matches the one observed with a hydrogen target, excep
the p0 peak, and is therefore used to subtract the backgro
under the pion peak. 

The kinematics of the event is transformed to the cen
of-mass system, and the angles up , wp , uq , and wq as well 
as the energy-sharing parameter e are calculated. For eac
accepted event, these parameters, together with inform
on the direction of the beam and target polarization at
time of the event, are stored for further processing. 

2. Spin-dependent yields 

We defne the ‘‘yield’’ to be the number of events in
certain region Dj of phase space, defned by conditions 
the fve kinematic variables j of the fnal state. There is on
such yield Ym,n(j), for each combination (m,n) of beam and
target polarization. For run A there are 8 and for run B
such combinations. The yields in different spin states 
always background corrected and normalized such that 
correspond to equal accumulated luminosity in every s
state. This normalization compensated differences of a 
percent in the luminosity with different beam polarizatio
The integrated luminosity was determined from a concur
measurement of pp elastic scattering ~see next section!. 

3. Monitoring beam and target polarization and the luminosity 

Concurrent with the measurement of pion producti
elastic pp scattering is observed by a dedicated set of f
detectors that covers the angular region near u lab545°. For 
these angles, the pp scattering spin correlation coeffcien
AD and Azz are quite large and well known @15#. This pro-
vides a sensitive on-line monitor for the products PxQx , 
PyQy , and PzQz of all three beam polarization componen
and the target polarization Q5Qx5Qy5Qz . Note that the
pp elastic scattering analyzing powers near u lab545° are 
small, so that the individual values for P and Q are not well 
determined from this measurement; however, these num
are not needed for the subsequent analysis. From thepp 
scattering yield, averaged over azimuth and from the kn
cross section, we also deduce the integrated luminosity
cumulated with each of the combinations of beam and ta
polarization. The relative luminosities are used to norma
the pion production yields in different spin states to eq
integrated luminosity. 

D. Asymmetries 

From the spin-dependent yields, three different asym
tries can be calculated. The frst, SP , is the beam polariza
tion asymmetry. It is obtained from the difference in 
yields with positive and negative beam polarization, summ
over all target polarization directions j: 
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( ~ Y1,Q 2Y2,Q ! 
m mm5x,y,z 

SP5 . ~14a! 

( ~ Y1,Q 1Y2,Q ! 
m mm5x,y,z 

Since each target orientation occurs with both signs, 
effectively corresponds to an unpolarized target. The sum
the denominator is an average over both beam and ta
polarization direction, and thus represents the spin-avera
yield. Note that for run B the beam polarization is not alo
one of the coordinate axes and the asymmetry SP contains 
contributions from all the three polarization components.

The three target polarization asymmetries for the ta
polarization directions m 5 x, y or z are given by 

~ !( Yn,1Q 2Yn,2Q 
n51,2 m m 

SQ 5 , ~14b! 
m 

~ !( Yn,1Q 1Yn,2Q 
n51,2 m m 

where the sum over n provhdes the average over the bea
polarization direction. 

Finally, the three spin correlation asymmetries, again w
the target polarization in the m 5 x, y, or  z directions, are
given by 

~Y1,1Q 1Y2,2Q !2~Y1,2Q 1Y2,1Q ! 
m m m m

SP,Q 5 . 
m ~Y1,1Q 1Y2,2Q !1~Y1,2Q 1Y2,1Q ! 

m m m m 

~14c! 

These asymmetries will be needed as a function of som
the kinematic variables j while integrating over the others
For instance, if we want to know the asymmetries as a fu
tion of uq and wq , we sort the events into bins that divide t
full range of uq and wq to obtain the yields Yn,m(uq ,wq) 
while ignoring the other kinematic variables. If the detec
acceptance is 100%, ignoring a kinematic variable is equ
lent to integrating over that variable. Corrections due to
complete detector acceptance are discussed in Sec. IV F
asymmetries SP , SQ , and SP,Q of Eq. ~14! form the basis

m m 

for deducing the observables as described in Secs. IV B
IV C. 

IV. RESULTS 

A. Exploring the fve-dimensional phase space 

The dependence of each polarization observable on
kinematic variables contains a wealth of detailed informat
about the reaction, but it also presents the diffculty of ord
ing and accessing this information. In the present case
beneft from the limited number of amplitudes, which p
mits us to determine the functional dependence of the
servables on the angles uq , wq , up , wp @Eq. ~11!#. Based on
this knowledge we now develop a procedure for extrac
polarization information from the data in a systematic a
complete way. 
2-8 
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Inspecting Eq. ~11!, we note that the azimuthal functio
Fk(wq ,wp) that occur are one of the following: wq , wp , 
wp1wq , 2wp2wq , 2wq2wp, or  wp2wq . Assume that we
evaluate the asymmetries versus one of these functionFk 
(k51, . . . ,6)  by  sorting the events into bins of constant Fk . 
This is equivalent to an integral over azimuth with the c
dition Fk5const, and eliminates one of the two azimut
degrees of freedom. The implied integration retains o
terms in Eqs. ~11! that either contain Fk or do not depend on
azimuth at all. To further reduce the remaining terms, 
evaluate observables as a function of one of the polar an
u (up or uq), while integrating over the other one by igno
ing it. Thus, for each of the polarization observables liste
Eq. ~8!, we have the choice of six azimuthal functions Fk 
and two polar angles. The resulting set of observables
are now functions of a single variable ~either up or uq) rep-
resents completely the effect of polarized collision partn
on the angular variables. For now, we ignore the depend
on the energy-sharing parameter e, and integrate over thi
quantity as well. The dependence on e will be discussed
separately in Sec. IV E. 

B. Ay0 , AS , Azz , AD , and Axz 

The spin-dependent cross sections s0Ay0 , s0AS , s0Azz , 
s0AD , and s0Axz contain only terms that are either azimu
independent or proportional to cos Fk or cos 2Fk where Fk is 
one of fve azimuthal dependences. Let us defne the p
ization observable AFk(uq) @or AFk(up)] as that part of thei j  i j  
observable Ai j  that remains when integrating over up @or uq] 
and over wq and wp with the constraint Fk50. Of course,
we still distinguish contributions with cosFk from those with 
cos 2Fk , since we have knowledge of the full Fk distribu-
tion. In this defnition, the particular Fk selected is used as 
superscript as a reminder that Fk is used to isolate the cor
responding term; it no longer appears in the functional 
pendence of the observable. As an example, the trans
beam analyzing power that would be measured when ob

fing just the pion, in the present notation, would be Ay0 
q(uq). 

Using this defnition, we end up with the following obse
ables: 

AS~uq!, AS~up!: Azz ~uq!: Azz ~up!, 

w w wA q~uq!, A q~uq!, A q~uq!,y0 xz D 
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wp wp wpA ~up!, Axz ~up!, AD ~up!,y0 

w 2w 2w 2w 2wp p q q pA ~uq!, A ~uq!, A ~uq!,y0 y0 y0 

wp 2wp2wq 2wq2wpA ~up!, A ~up!, A ~up!,y0 y0 y0 

wp 2wp2wq 2wq2wpA ~uq!, A ~uq!, A ~uq!,xz xz xz 

w 2w 2w 2w 2wp p q q pA ~up!, A ~up!, A ~up!,xz xz xz 

w w 1w wA p~uq!, A p q~uq!, A q~up!. ~15!D D D 

These 25 independent observables are extracted from
data as follows. First, we sort the events into bins for 
selected polar angle u5up or uq and azimuth function Fk to 
obtain the asymmetries SP(u,Fk), SQ (u,Fk), and 

m 

SP,Q (u,Fk) in Eq. ~14!. Next, we insert the spin-depende
m 

cross section, Eq. ~4!, into the expression for the asymm
tries. For instance, for the beam asymmetry @Eq. ~14a!# this 
results in SP(u,Fk)5PxAx0(u,Fk)1PyAy0(u,Fk). Simi-
larly, Eq. ~14b! yields the two relations SQj

(u,Fk) 

5QA0 j (u,Fk), where j 5x or y. We then use the equiva
lences in Eqs. ~6! and ~7! and the defnition of AF 

y0 
k(u) to

obtain 

SP~u,Fk!5AFk~u!~ Py cos Fk2Px sin Fk!, ~16a! y0 

SQx 
~u,Fk!5Ay 

F 
0 
k~u!Q sin Fk , ~16b! 

SQy 
~u,Fk!5AF 

y0 
k~u!Q cos Fk . ~16c! 

The Fk distributions of the asymmetries on the left a
measured. Since Eqs. ~16! constrain the ratios Py /Q and 
Px /Q, knowing just the products PxQ and PyQ ~see Sec.
III C 3! is suffcient to extract AF 

y0 
k(u). 

In a similar fashion, the spin correlation observables 
extracted; note that the observables AS and Azz have no azi-
muthal dependence, except for the terms containing Dw 
5wp2wq which will be discussed separately in the next s
tion: 
SP,Q ~u,Fk!51/2AS~u!PxQ11/2AFk~u!~ PxQ cos 2Fk1PyQ sin 2Fk!2AFk~p2u!PzQ cos Fk , ~17a! 
x D xz 

SP,Q ~u,Fk!51/2AS~u!PyQ11/2AFk~u!~ PxQ sin 2Fk2PyQ cos 2Fk!2AFk~p2u!PzQ sin Fk , ~17b! 
y D xz 

SP,Q ~u,Fk!5AFk~u!~ PxQ cos Fk1PyQ sin Fk!1Azz ~u!PzQ. ~17c! xzz 
2-9 
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FIG. 5. The observables AS(uq) and Azz(uq) as a function of
bombarding energy. The dashed curve is obtained with the co
cients of Table IV inserted into Eqs. ~11!. The solid line is the sam
but takes into account the real acceptance of the detector ~see Sec.
IV F!. The current status of the theory is illustrated by the do
line ~see Sec. V B!. 

Some of the 25 observables that are determined in
manner are displayed in Figs. 5–9. Figures 5 and 6 show
spin correlation coeffcients AS(u) and Azz(u) as a function
of uq and up , respectively, for all four bombarding energie

wFigure 7 shows the analyzing power Ay0 
q(uq) and the two

spin correlation coeffcients Awq(uq) and Awq(uq) that would xz D 
be measured if only the pion were observed, i.e., if the
rection of the relative pp momentum is ignored. Similarly

FIG. 6. The observables AS(up) and Azz(up) as a function of
bombarding energy. The curves are explained in the captio
Fig. 5. 
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FIG. 7. Awq(uq), Awq(uq), and Awq(uq) at all four bombardingy0 xz D 
energies. These observables are based on the direction of thp0; 
i.e., the relative proton momentum is ignored. The curves are
plained in the caption of Fig. 5. 

Fig. 8 shows these observables for the case where the
direction is ignored. In Fig. 9, some of the remaining p
sible observables are shown at 375 MeV, the energy with
best statistics. The errors shown in these fgures are 
counting statistics only. The solid curve is obtained from 
~11! with the coeffcients in Table IV, taking into account t
restricted acceptance of the detector system, while 
dashed curve results when a detector with 100% accept
is assumed. The only signifcant effect of the restricted 
ceptance occurs with the observables AS and Azz . The dot-
ted curves are theoretical calculations that will be discus
later. 

C. Az0 and AJ 

The longitudinal analyzing power Az0 and the combina-
tion AJ[Axy2Ayx of spin correlation coeffcients are pro
portional to sin Dw or sin 2Dw @Eq. ~11!#, where Dw[wp 
2wq . Thus, these observables are invariant with respect
rotation around the beam axis, and they vanish for Dw50 
and p, which is the case when the momenta of the th
outgoing particles are coplanar. The vanishing of these
servables in the case of a coplanar fnal state is a co
quence of parity conservation. In fact, a measurement ofAz0 
2-10 
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FIG. 8. Awp(up), Awp(up), and Awp(up) at all four bombardingy0 xz D 
energies. These observables are based on the direction of the
tive proton momentum; i.e., the p0 momentum is ignored. The
curves are explained in the caption of Fig. 5. 

in a two-body fnal-state reaction ~thus, in coplanar geom
etry!, or in a total cross section, has been used as a to
study the violation of parity conservation @16#. 

Recently, we have published a frst analysis @17# of the 
longitudinal analyzing power Az0 for pp→ppp0 in which 
we demonstrated that this observable can be quite lar
noncoplanar fnal states are involved. Previous meas
ments of this observable are scarce: some indication 
large value of Az0 was found @18# in another pion production

2reaction, pn→ppp at 443 MeV, while a measurement 
Az0 in the reaction 2H(p,pp)n at 9 MeV yielded values tha
are consistent with zero at the level of 0.003 @19#. 

In analogy with the previous section, we defne the 
servables ADw(uq), A2Dw(uq), and AJ

Dw(uq) as  Az0(j) andz0 z0 
AJ(j), integrated over up , as well as integrated over az
muth with the condition Dw5const and evaluated at Dw 
5p/2. This defnition is suggested by Eqs. ~11g! and ~11h!. 
Again, we can distinguish ADw(uq) from A2Dw(uq) becausez0 z0 
we know the full Dw distribution. Likewise, we defne th

Dw 2Dw DwDw parts of AS and Azz as AS , AS , Azz and A2Dw , in  zz 
this case evaluated at Dw50 @based on Eqs. ~11c! and 
~11d!#. 

In order to extract Az0 and AJ from the present data, w
generate the asymmetries SP , SQj

, and SP,Qj 
as a function of
06400
ela-

FIG. 9. Some of the observables not shown in Figs. 5–8, at
MeV bombarding energy. For these observables the direction
the p0 and of the relative proton momentum have to be known. T
curves are explained in the caption of Fig. 5. 
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Dw. It is obvious that Ay0 , Axz , and AD do not contribute in
this case, since they do not depend on Dw. Ignoring for the 
moment a possible Dw dependence of the spin-averag
cross section, we obtain, for the asymmetries @analogous to
Eqs. ~16! and ~17!#, 

Dw u,Dw!5PzA ~u!sin 2Dw, ~18a!SP~ z0 

SQ ~u,Dw!5SQ ~u,Dw!50, ~18b! 
x y 

Dw 2Dw ~u,Dw!5QA ~p2u!sin Dw1QA ~p2u!sin 2Dw,SQ z0 z0z 

~18c! 

DwSP,Q ~u,Dw!51/2PxQ@AS~u!1AS ~u!cos Dw 
x 

1AS 
2Dw ~u!cos 2Dw# 

Dw21/2AJ ~u!PyQ sin Dw, ~18d! 

DwSP,Q ~u,Dw!51/2PyQ@AS~u!1AS ~u!cos Dw 
y 

1AS 
2Dw~u!cos 2Dw# 

Dw11/2AJ ~u!PxQsinDw, ~18e! 
2-11 
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TABLE IV. Values at the four bombarding energies of the coeffcients introduced in Eqs. ~11!. The 
derivation of these coeffcients is discussed in Sec. IV D. All values have been normalized with the c
factor 8p2/s tot . These numbers parametrize all possible initial-state polarization observables of the r
everywhere in phase space. 

325 MeV 350 MeV 375 MeV 400 MeV 
Value Error Value Error Value Error Value Error

E 0.721 0.082 0.410 0.086 0.221 0.030 0.043 0.053 
F1 0.168 0.021 0.265 0.022 0.262 0.007 0.297 0.013 

00H0 0.111 0.005 0.325 0.010 0.517 0.015 0.660 0.010 
H0 

S 0.056 0.059 0.289 0.060 0.369 0.038 0.603 0.048 
zzH0 0.055 0.082 0.036 0.086 0.148 0.030 0.057 0.053 

001IH 1 0.014 0.082 0.041 0.086 0.063 0.030 0.084 0.053 
001F21KH2 20.008 0.416 20.059 0.419 20.118 0.402 20.170 0.406 

H1 

H2 
zz2IH1 0.031 0.056 0.092 0.058 0.143 0.023 0.189 0.04
zz2F22KH2 20.046 0.079 20.104 0.080 20.139 0.030 20.166 0.059 

z0G1 20.096 0.010 20.223 0.022 20.296 0.030 20.344 0.034 

S

S 
12I 20.017 0.060 20.051 0.064 20.080 0.020 20.105 0.028 
22F212K 20.078 0.080 20.167 0.094 20.215 0.024 20.248 0.114 

G1 
z0H1 0.019 0.002 0.057 0.006 0.089 0.009 0.117 0.01
z0H2 20.054 0.052 0.020 0.047 20.041 0.020 0.000 0.032 

00H4 20.013 0.006 20.038 0.018 20.060 0.029 20.079 0.038 
00H5 20.056 0.006 20.165 0.018 20.257 0.029 20.325 0.038 

J 20.158 0.016 20.365 0.037 20.486 0.049 20.564 0.056 

H4 

H5 
zzH4 0.025 0.019 0.074 0.055 0.115 0.080 0.152 0.11
zzH5 0.074 0.019 0.217 0.055 0.339 0.080 0.363 0.11

G1 
y0 20.079 0.016 20.196 0.016 20.223 0.005 20.291 0.009 

G2 
y0 0.009 0.020 20.023 0.022 0.026 0.007 0.048 0.011

G3 
y0 20.018 0.038 20.149 0.038 20.298 0.013 20.347 0.021 

G4 
y0 0.018 0.024 0.037 0.024 0.031 0.008 0.030 0.01
xzG1 0.223 0.058 0.396 0.056 0.473 0.022 0.574 0.04

S

S 

D

D

D

D

D 

xzG2 0.058 0.083 20.043 0.083 0.024 0.029 0.040 0.054
xzG3 0.146 0.140 0.017 0.136 0.245 0.051 0.195 0.09
xzG4 0.045 0.086 20.031 0.086 0.035 0.032 0.085 0.059

y01I y0H1 0.030 0.019 0.016 0.019 0.000 0.006 20.029 0.011 
y01Ky0H3 20.051 0.019 20.045 0.019 20.049 0.006 20.061 0.011 

H4 
y0 0.006 0.019 20.019 0.019 0.018 0.006 0.028 0.011
y0H5 20.011 0.029 0.039 0.029 0.021 0.010 0.024 0.01
y0H6 20.016 0.029 0.121 0.029 0.071 0.010 0.062 0.01
xz1I xzH1 0.064 0.068 0.027 0.068 0.203 0.025 0.216 0.04
xz1KxzH3 20.123 0.068 20.193 0.068 20.188 0.025 20.316 0.047 
xzH4 20.101 0.070 20.086 0.068 0.051 0.028 20.053 0.049 
xzH5 0.016 0.102 20.259 0.102 20.315 0.038 20.391 0.070 
xzH6 0.027 0.102 0.157 0.102 0.153 0.038 0.208 0.07

H1 

H2 

H3 

H4 

H5 

20.038 0.019 20.122 0.055 20.175 0.086 20.231 0.114 
20.133 0.019 20.389 0.055 20.607 0.086 20.688 0.090 

0.135 0.081 0.194 0.099 0.374 0.027 0.379 0.03
20.069 0.120 20.020 0.141 20.008 0.036 0.072 0.054 
0.071 0.081 0.339 0.099 0.441 0.027 0.567 0.03
0.137 0.081 0.429 0.102 0.536 0.027 0.567 0.02

20.030 0.135 0.093 0.158 0.106 0.045 0.198 0.06
064002-12 
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FIG. 10. The asymmetries versus Dw[wp2wq at 375 MeV 
bombarding energy. Integrated over both polar angles, the cu
represent a ft to the Dw distribution according to Eq. ~18!. 

DwSP,Q ~u,Dw!5PzQ@Azz ~u!1Azz ~u!cos Dw 
z 

2Dw1A ~u!cos 2Dw#. ~18f!zz 

These asymmetries, integrated over polar angle, are sho
Fig. 10. Here, SP and SQ refect the beam and target analy

z 

ing powers Az0 and A0z , which are related by Eq. ~7!. The 
quantities SQ and SQ are consistent with zero, as expecte

x y 

Evaluating the asymmetries as a function of uq ~thus, in-
tegrating over up), we extract the uq distributions of the
observables by ftting with the respective functions of Dw. In  
this way we obtain the observables 

Dw DwA ~uq!, AJ ~uq! ~Dw5p/2!, ~19!z0 

Dw DwAS ~uq!, Azz ~uq! ~Dw50!, 

2Dw 2DwAS ~uq!, A ~uq! ~Dw50!.zz 

The part of Az0 that scales with sin 2Dw @see Eq. ~11g!# was 
found to be consistent with zero. It is clear from Eqs. ~11g! 
and ~11h! that the up dependence does not contain indep
dent information. Thus, from the Dw-dependent asymmetrie
we extract six additional observables. They are shown in 
11 for the measurements with better statistics at 375 and
MeV. 

D. Parametrization of the data 

The expansion into functions of the angles uq , wq , up , 
wp @Eq. ~11!# allows one to calculate all polarization obse
06400
es 

 in 
-

.

-

ig. 
00 

-

FIG. 11. Polar angle uq dependence of the observables that 
pend on Dw[wp2wq , as discussed in Sec. IV C, at the two bo
barding energies with the best statistics. The curves are explain
the caption of Fig. 5. 

ables at any point in phase space, provided the expan
coeffcients E, F, G, . . . are known. These coeffcients th
represent a parametrization of all our measurements and
stitute the central result of this experiment. The values
the coeffcients, normalized by a common factor 8p2/s tot , 
are listed in Table IV. Note that the common factor canc
when calculating a polarization observable Ai j  by dividing 
the spin-dependent cross section s0Ai j  by the spin-averaged
cross section s0. 

The task of determining the values of the coeffcients
Eqs. ~11! is simplifed by the fact that a given polarizatio
observable from the list in Eqs. ~15! and ~19! depends on
only a few coeffcients. For instance, the observable Awq(uq)y0 

y0 00 wdepends on y0, (H1 1I y0), and (H1 1I ), and A q(up)G1 y0 
y0 y0 00depends on G1 , G2 , and (H2 1F21K). However, the

quality of the data, especially at the lower two energies
2-13 
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TABLE V. Total cross sections versus bombarding energy. The second column lists the spin-a
total cross section assumed in this paper. The next two columns show the result of this experimen
spin-dependendent total cross sections. These values have been corrected for incomplete detector a
by the amount listed in the last two columns ~see Sec. IV F!. 

T 
~MeV! 

s tot(h) 
(mb) 

DsT /s tot DsL /s tot Corrections 
d(DsT /s tot) d(DsL /s tot) 

325 
350 
375 
400 

7.7 
17 
40 
86 

21.16260.063 
20.57960.068 
20.28760.018 
20.09660.030 

1.66860.116 
1.27860.114 
0.67160.046 
0.56560.088 

20.106 
20.095 
20.059 
20.020 

0.026 
0.026 
0.021 
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not suffcient to ft the coeffcients to the data without a
constraining assumptions. In the following, we descr
these assumptions and a step-by-step procedure to dete
the coeffcients of Eq. ~11!. 

00In the frst step, we address the coeffcients E, F1 , H0 , 
S zzH0 , and H0 . The corresponding terms in Eq. ~11! do not 

depend on angle but represent different fnal states (Ss)2, 
(Ps)2, and (Pp)2 ~see Table II!. The relative weight of th
(Ps)2 fnal state follows from the spin-dependent total cr
section @Eq. ~13!#, but the relative contributions of the (Ss)2 

and (Pp)2 fnal states can only be distinguished because 
depend on energy e differently. This is explained in mor
detail in Sec. IV E. Using that result, we set the coeffc

00H0 equal to s(Pp)/s tot , the relative contribution of the
(Pp)2 fnal state. Having fxed the (Pp)2 strength, the coef-

00 S zzfcients E, F1 , H0 , H0 , and H0 follow from Eqs. ~12!, 
with the values of the spin-dependent total cross sect
DsT /s tot and DsL /s tot , which have been deduced fro
the total, spin-dependent yields as listed in Table V. 

Next, we turn to the coeffcients that multiply the ter
with (3 cos2u21) in s0 , s0AS, and s0Azz @Eqs. ~11a!, 

00 S zz 00 ~11c!, ~11d!#. Those coeffcients are H1 , H1 , H1 , H2 , 
zzH2 , and F2, two of which can be eliminated by Eq. ~12d!. 

The SsSd and SsDs interference terms, I and K may be 
lumped with the corresponding Hk

i j  terms with Eq. ~12d! still 
satisfed. Since calculating the observables s0Ai j  /s0 in-
volves a ratio of similar functions, the statistical accuracy
the present data is insuffcient to determine these coeffc
separately for each bombarding energy. Instead, we im

i j (h)an energy dependence on the coeffcients by setting Hk 

5H̄ i j
Łh8/s tot(h) and F2(h)5̄F2(h)Łh6/s tot(h). The jus-k 

tifcation for this assumption is given in the next section, 
the values for s tot(h) are those listed in Ref. @11# and in 
Table V. Thus, we ft fve variables to the angular distri
tions AS(uq), AS(up), Azz(uq), and Azz(up) at all four en-
ergies simultaneously. The ft is shown as a solid line in F
5 and 6; the x2 per degree of freedom is 1.5. 

00 S zzNext, we determine the coeffcients Hk , Hk , Hk (k 
z054,5), H1 , Gz0, and GJ that appear with terms that con

tain Dw. Again, Eq. ~12d! constrains the Hi j
k . The corre-

sponding observables have been discussed in Sec. IV C
again impose a bombarding energy dependence of the H co-
effcients as described in the preceding paragraph and
Gi j (h)5Ḡ i j h7/s tot(h). The remaining seven variables a
06400
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s. 

We 

then ft to the angular distributions AS(uq), AS
Dw(uq), 

AS 
2Dw(uq), Azz(uq), ADw(uq), A2Dw(uq), ADw(uq), andzz zz z0 

AJ
Dw(uq) at all four energies simultaneously. The ft is sho

as a solid line in Fig. 11; the x2 per degree of freedom is 1.6
With the angular dependence of the spin-averaged c

section now known, the remaining coeffcients are de
mined by ftting the corresponding observables without 
constraint on their energy dependence. The errors are
tained by propagating the statistical errors of the meas
ments. 

Note that the observables @Eqs. ~15! and ~19!# are inte-
grated over either up or uq and thus do not constrain th

00 S zz x0 xzcoeffcients H3 ,H3 ,H3 ,H2 , and H2 . 
The values of the coeffcients in Table IV have been 

tained from the data by taking into account the incomp
acceptance of the detector ~for more detail, see Sec. IV F
The resulting parametrization of the data is shown as a s
line in Figs. 5–9. Using the same coeffcients, but pretend
that the detector accepts all of phase space, leads to
dashed line. This illustrates the smallness of the effec
incomplete detector acceptance. 

We note that the coeffcients I and K that represent inter
fering SsSd and SsDs amplitudes always occur in a sum wi
an Hk

i j  coeffcient. These sums become a single paramet
the analysis. Thus, the present analysis provides no info
tion on the importance of these terms. 

Equations ~11! contain a total of 49 coeffcients. Of thes
we determine 44 from the data ~see Table IV!. Among these
there are six known relations @Eqs. ~12a!, ~12d!#, resulting in 
38 numbers determined. On the other hand, the coeffc
are ~known! functions of the amplitudes listed in Table 
Ignoring contributions from Sd and Ds amplitudes, there are
12 amplitudes. Since there is no interference between am
tudes with sf50 and sf51, there are two free phases, and,
principle 22 real numbers should be suffcient to comple
describe the data. Thus, the parametrization presented
@Eq. ~11! and Table IV# has some redundancy; i.e., there a
relations between the parameters @in addition to those in Eq
~12!#. These relations will be revealed in the course of 
amplitude analysis which is planned for the future. 

E. Energy dependence 

1. Defnitions and kinematics relation 

set A complete description of the fnal-state kinematics, ap
 from the four angles up , wp , uq , wq , must include an en
2-14 
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ergy variable that specifes the sharing of the available
netic energy between the pion and the NN pair. There is only
one such variable since the total energy of the system, As, is  
determined by the bombarding energy. For instance, if q is 
the magnitude of the pion center-of-mass momentum,
proton momentum in the NN rest system is given by 

1 
p5 

2 
As1224m2 

p 'qmaxA12~ q/qmax!
2, ~20! 

2where s125s22As(q21m2 )1m is the square of the enp p 
ergy of the NN subsystem. The second part of Eq. ~20! is the 
corresponding nonrelativistic expression, which is a good
proximation near threshold. Here, qmax @Eq. ~1!# is the largest
possible pion momentum, which is realized when the 
protons are at rest relative to each other (p50). In the fol-
lowing, we use as the energy-sharing variable, the kin
energy e in the NN subsystem given by 

e5As1222mp , ~21! 

which ranges from e50 ~when q5qmax) to  emax5As 
22mp2mp ~when q50). The value for emax is determined
by the bombarding energy, or h @Eq. ~2!#, as listed in Table
III for the energies of this experiment. Using Eqs. ~20! and

2. Leading contributions to the energy dependence 

~21!, p and q may be expressed in terms of e. 

For a limited energy range, the dynamics of pion produc-
tion is often considered energy independent. The strong
ergy dependence of the observables near threshold is then
due to a number of known factors, as discussed in the
lowing. 

The frst energy dependence is due to the phase s
volume dr(e). Nonrelativistically the phase space volume
proportional to q(e)p(e)de. The second energy-depende
factor arises from the radial wave functions for the pion 
the NN pair. Close to threshold, the momenta q and p, and 
thus the arguments of these wave functions, are small,
one can use their limiting form to obtain the factor ql qpl p, 
where l q and l p are the respective angular momenta. It is t
factor that makes it possible to use the energy dependen
the reaction to make statements about partial-wave cont
tions, but one must keep in mind that the simple power la
an approximation, strictly true only for p→0 or  q→0. 

The third energy-dependent factor arises from distor
in the entrance and exit channel. By far the strongest en
dependence is due to the fnal-state interaction ~FSI! between 
two nucleons in a relative S state. Watson showed @20# that 
the FSI energy dependence of the cross section can be 
rated as a factor f (e) that follows from the NN phase shifts
at energy e. One method to calculate f (e) is by representing
the S-wave phase shift by an effective-range expans
Since the two nucleons carry charge, Coulomb repulsion
to be incorporated into the effective-range expansion @21#. In  
the present work, this procedure is adopted for calculat
that involve FSIs. Other authors have used a ft to a phen
enological representation of the NN interaction to obtain
f (e) @10#. 
06400
i-
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o 
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When integrating over the energy-sharing parametee 
one obtains, via the upper limit emax , a dependence on bom
barding energy, or h. Thus, close to threshold, where on

0Ssthe contributes, the shape of total →wave pp pp crossp 
section function of bombarding energy should be deteasa 
mined by the phase and FSI, expectationthat isspace an 
borne out by the data 5 However, in order to reproduce th@ #. 
measured proton angular distributions, has to valueone usea 

1.5fm for the scattering length Ref. 5 This is sig-@ #!2 see~ . 
nifcantly larger than the accepted,Coulomb-uncorrected
value for the scattering length of 7.82 0.01fm52 6pp app 
22 This indicatesclearly that factorizing the FSI of the@ #. 

protons and neglecting all other distortions in the initial a
fnal is only approximation for this topic, states an moreon~ 

In Eq. 11 the partial-wave coeffcients E F G H!~ , , , , ,k k k 
and be integrated This integration is inde-I K may over e, . 

88 

see Ref. @23#!. 
i j  i j  

pendent of the angular variables since e ranges from 0 to
emax for any choice of angles. 

To reveal the explicit energy dependence of these co
cients, we separate off the probability wL(e) with which a 
given e occurs where L denotes the set of four fnal-sta
angular momenta, l p , l q , l p , and l q , that occur in the bilin-
ear sums of amplitudes, 

8p 

is zero, and by

8q p8 

where the normalization z ensures that *wL(e)de51. The 

e!11 l e!11 l1 l 1 le!de5z f L~e! de,wL~ q~ q p~ p 

~22! 

fnal-state factor is given by f L(e)5 f (e) if both l p and l are

n-
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zero, by f L(e)5Af (e) if either l p l 8p 
f L(e)51 in all other cases. The e dependence for partia
waves with various angular momenta is given in Table
The three functions wE(e), wF(e), and wH(e) represent
(Ss)2, (Ps)2, and (Pp)2 partial waves. For a bombardin
energy of 375 MeV, these three functions are displayed
solid curves in Fig. 12. Note that wE(e) clearly shows an
enhancement for small e, caused by the fnal-state intera
tion. In general, the weight functions wL(e) depend on the
detector acceptance, since in the laboratory the momen
the two protons do depend on e. This is illustrated in Fig. 12
by Monte Carlo–generated histograms that show the e
of a 5° central hole in the detector coverage. The co
quences of incomplete detector acceptance are discusse
ther in Sec. IV F. 

As briefy noted, the dependence of the amplitudes oe 
implies a dependence on bombarding energy, or h, because
the upper limit emax of the integration over e depends on h. 
In the absence of FSIs, and with the nonrelativistic exp
sion for the phase volume and for p(e) @Eq. ~20!#, the inte-
gration of Eq. ~22! is analytic and a simple power law re
sults. From this, we expect the partial-wave coeffcientsF, 
G, and H to be proportional to h6/s tot(h), h7/s tot(h), and 
h8/s tot(h), respectively. Such a simple dependence on b
barding energy is not expected for the coeffcients E, I, and 
K, since these are affected by the FSI. 

3. Dependence of AS and Azz on the energy-sharing parameter

Some of the coeffcients in Eq. ~11! cannot be distin-
guished from each other based on the angular distributi

or 
2-15 
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FIG. 12. The probability wL(e) as a function of the energy
sharing parameter e/emax . The solid line corresponds to Eq. ~22!, 
while the Monte Carlo–generated histograms show the effect o
central hole in the detector stack. 

However, their individual values can still be assessed, u
the fact that they depend differently on the energy param
e. In this section, we explain how this can be done. 

When we integrate the spin-dependent cross section
Eq. ~11! over all angles, only s0(e), s0(e)AS(e), and 
s0(e)Azz(e) remain which in turn depend on four coef

00 S zz zz 00 Scients E, F1 , H0 , H0 , and H0 , where H0 5H0 2H0 . 
Note that these coeffcients when normalized by 8p2/s tot are 
related to the partial-wave total cross sections s( l p ,l q) by

00 s(Ss)/s tot5E, s(Ps)/s tot5F1, and s(Pp)/s tot5H0 . 
The present notation is related to that used in Ref. @11# by 

S2ŝ (Pp)/s tot5H0 . The two observables AS(e) and Azz(e) 
in terms of the partial-wave coeffcients are now given b

2@EŁwE~e!2F1ŁwF~e!#1H0 
S
ŁwH~e! 

AS~e!5 , 
EŁwE~e!1F1ŁwF~e!1H0 

S
ŁwH~e! 

~23a! 

00 S2EŁwE~e!2F1ŁwF~e!1~H0 2H0 !ŁwH~e! 
Azz ~e!5 . 

EŁwE~e!1F1ŁwF~e!1H0 
S
ŁwH~e! 

~23b! 

In these equations, the probabilities wE , wF , and wH are 
known functions of e that differ from each other ~see Fig. 
12!. Thus, it is possible to determine the coeffcients E, F1 , 
H0 

00, and HS 
0 from a ft to the measured AS(e) and Azz(e). 

These coeffcients are not accessible separately by a stu
the angular distributions. A similar method has been app
previously @10# to the spin-averaged total cross section a
function of e. 

From the set of good events we determine AS(e) and 
Azz(e) following the same procedure as described in S
IV B, except that the argument uq ~or up) is replaced by the
06400
FIG. 13. Dependence of AS and Azz , integrated over both pola
angles, on the energy-sharing parameter e/emax . The solid lines 
represent a three-parameter ft to the data at all four energies s
taneously; see Sec. IV E 3. 

he 

ng 
ter 
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 a 

c. 

energy-sharing parameter e. The result is shown in Fig. 1
for all four bombarding energies. The solid curves are 
tained from Eq. ~23! with weight functions wL that take into 
account the acceptance of the detector. The coeffcien
Eq. ~23! were forced to depend on bombarding energy
F1(h)5F̃1h6/s tot(h), 00(h)5H̃ 0 andH0 

00h8/s tot(h), 

H0 
S(h)5H̃ 0 

Sh8/s tot(h). At T5325 MeV an accurate valu
for the total cross section exists (s tot57.7060.26 mb @5#!. 
However, at higher energies, data are few and of poor q
ity. For the present purpose we use for s tot(h) a smooth 
approximation to the world’s data ~see Ref. @11# and Table 
V! Assuming that there are no other partial waves, we h

00E512F12H0 . Therefore, only three energy-independe
parameters are adjusted. The x2 of the best ft per degree o
freedom is 1.8, which leads us to suspect that the limitat
of the simple energy dependence adopted here may be
ticeable, especially at the higher energies. The resu
partial-wave contributions to the total cross section 
shown in Fig. 14. The error bars are obtained by repea
the ft by varying the values assumed for s tot or by using 

FIG. 14. Contribution of the three possible fnal-state ang
momenta to the total cross section. The dashed and solid lines
resent the expected h6 (h8) dependence of the Ps ~Pp! partial-wave 
cross section, while the dotted line indicates the remainder, w
represents the Ss partial-wave cross section. 
2-16 
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FIG. 15. Dependence of some of the coeffcients of Eqs. ~11! 
and Table IV on the bombarding energy. The two lines are pro
tional to h7 ~solid! ~expected for the G coeffcients! and h8 

~dashed! ~expected for the H coeffcients!. 

weight functions wL calculated directly from Eq. ~22!, as
would be appropriate for a detector with 100% accepta
The dashed line in Fig. 14 represents the expected h6 depen-
dence of the Ps partial cross section, s(Ps)5F1, and the 
solid line corresponds to the imposed h8 dependence o

00 s(Pp)5H0 , while the dotted line indicates the remaind
00given by E512F12H0 , which represents the Ss partial-

wave cross section. 

4. Dependence of observables on bombarding energy 

As pointed out at the end of Sec. IV E 1, based on
phase space, angular momentum dependence of the 
functions, and FSI, we expect that the partial-wave co
cients F, G, and H times the total cross section s tot(h) are 

6 7 8proportional to h , h , and h , respectively. We have als
explained that the integration over e is independent of the
angular variables. Thus, each of the coeffcients in Eq. ~11! 
that does not contain a NN S state (F, G, and H coeffcients! 
is expected to obey such a power law. In order to test
expectation, we have to multiply the values for the coe
cients in Table IV by the total cross section s tot(h) at the 
corresponding energy. For s tot(h) we use a smooth approx
mation to the world’s data, as explained in the previous 
tion. The resulting h dependence of some of the coeffcien
in Table IV that have been obtained without constrain
their energy dependence is shown in Fig. 15. The two l
shown in the fgure correspond to the best ft with an h7 or 
h8 dependence. As can be seen, the simple power-lah 
dependence of the coeffcients is at least qualitatively 

xzrect. This is also true for the coeffcient (H3 1K/2), which 
could in principle contain a contribution from a Ds ampli-
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tude. The observation that the G and H coeffcients obey the
power law that is expected from the ‘‘trivial’’ energy
dependent factors confrms a similar fnding based on par
wave contributions to the spin-dependent total cross sec
@11#. 

F. Systematic uncertainties and corrections 

1. Corrections for a nonideal detector 

For a number of reasons, the apparatus does not reg
all the generated pp→ppp0 events. The main loss of even
occurs because the detector system has a hole in the cen
allow for the 3-cm-diam beam pipe just downstream of 
target. Seen from the center of the target, this hole subt
a cone with about 5° opening angle. Between 25% ~at 325 
MeV! and 10% ~at 400 MeV!of all events have at least on
proton that falls into this cone. At 400 MeV a few percent
the events miss the detector on the outside, and abou
contain a proton that is energetic enough to fre the v
detector. In about 2% of the events, both protons strike
same segment of the E detector, and therefore do not tr
the detector. The effciency of an individual wire chamb
plane is between 93% and 95%, but since only three pl
have to respond for a valid event, only about 8% of all eve
are lost because of this. All of these effects combi
amount to a loss of events between 30% and 22% for
energies from 325 MeV to 400 MeV. A Monte Carlo sim
lation of the detailed detector performance was used to
termine these numbers. Reactions in the scintillators m
lower the proton energy measured by the K and E scint
tors, leading to a tail of the p0 peak in the missing-mas
spectrum ~Fig. 4!, placing some good events outside the 
cepted mass range. However, there is no evidence for a
nifcant tail in the mass spectrum. 

The correction of the data presented in this paper for
losses discussed above turns out to be small. This is bec
polarization observables are a ratio of yields measured 
and without polarization. If the fraction of lost events is t
same in both cases, there is no net correction. For this re
there is no correction for the data in a given volume elem
dVpdVqde of the fve-dimensional phase space. Thus, c
rections arise only when integrating over some region of
phase space. 

Acceptance corrections are estimated as follows. Le
denote by a(j) the detector acceptance at a given point j in 
phase space. Since the corresponding event is either se
not seen, a(j) has a value of 1 or 0. In fve-dimension
phase space the transition from a50 to  a51 occurs at well-
defned boundaries. However, when one integrates over 
eral variables, the dependence of a on the remaining vari-
ables is smoothed out, and this is another reason for
smallness of the acceptance corrections. Since the funct
dependence of the observables on all fve variables uq , wq , 
up , wp , and e is known, we can carry out the integratio
over kinematic variables, weighting the integrand with a(j) 
and thus taking into account the real detector accepta
These integrals are evaluated numerically using the Mo
Carlo method for each of the partial waves in Table II a
for each of the trigonometric functions of the kinematic va
2-17 
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ables. For comparison, setting a51, independent of j, yields 
the result for a detector with 100% acceptance. The effe
incomplete acceptance on the angular distributions is il
trated in Figs. 5–9. The solid curve is obtained from E
~11! and the coeffcients in Table IV using the true detec
acceptance, while the dashed line results when 100% d
tor acceptance is assumed. As can be seen the effec
very small. 

The acceptance corrections for the total cross sect
Eq. ~12!, involve the integrals over the entire phase space
three partial waves with the fnal states Ss, Ps and Pp, cor-
responding to E, F1, and H in Eq. ~12!. Again, if the frac-
tional loss for all three partial waves were the same, th
would be no correction. However, as can be seen from 
12, the Ss partial wave is affected more strongly by losses
the central hole than the other two partial waves. In orde
evaluate the correction for DsT /s tot and DsL /s tot the rela-
tive strength of the three partial waves is taken as show
Fig. 14. The resulting corrections are listed in Table V. T
are slightly different than those used in Ref. @11# because
more has since been learned about the relative importan
the three contributing partial waves. 

2. Other systematic effects 

The dead time of the data acquisition system was m
sured for each of the different spin states of beam and ta
The dead time is a few percent and differences between
states are less than 1023. Thus, dead time effects can b
neglected. 

The reconstruction of the pion polar angle uq depends
sensitively on the absolute energy calibration of the E an
scintillators, since the pion has to account for the remain
momentum. However, because of the identity of the collis
partners, the spin-averaged cross section has to be symm
around uq590°. This condition has been used as one of
criteria in determining the energy calibration of the scinti
tors. 

Finally, one has to worry about the resolution of the 
tector system as a whole for the cms angles up ,fp ,uq , and 
fq . This has been studied with a Monte Carlo simulation
the response of the detector system. The generated e
were processed by the same code that was used to an
the data. For all four angles, the difference between the
constructed angle and the ‘‘true’’ angle ~as chosen initially
by the Monte Carlo simulation! falls into a distribution
which is very nearly a Gaussian, centered on zero within
widths of the distributions. We identify the angular reso
tion with the s of this Gaussian in each case. These dis
butions vary somewhat with beam energy and are wides
the lowest-energy data. Therefore, we here report the s of 
the Gaussian ft to each distribution at 325 MeV beam 
ergy. The results are s53.0° for up , 1.5° for fp , 8.0° for 
uq , and 6.0° for fq . The s corresponding to the cos(up) 
distribution of errors is 0.04, and for cos(uq) it is 0.12. There
is no correlation observed between the errors in the re
structed p and q vectors. Clearly, this resolution is suffcie
to resolve the harmonic content of the angular distributi
in this experiment. 
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V. COMPARISON WITH THEORY 

A. Current status of the theory of NN\NNp 

The advent of new data due to the three technical 
vances mentioned in Sec. I was answered by theoretica
velopments. The frst measurements triggered a stud
quantum number selection rules, of the role of the fnal-s
interaction, and of nucleon excited states, and led to a th
of pion production in analogy with quantum electrodyna
ics. The availability of kinematically complete cross sect
data led to the application of effective chiral Lagrangians
soft pion techniques, and models with coupled channels,
the recent precise cross section data close to threshold
tained at storage rings stimulated the construction of me
exchange models, and a study of the short-range part o
NN interaction as well as the role of chiral symmetry in 
interpretation of pion production. A review of the develop
ment of the theory of pNN systems, prior to 1990 is given i
Ref. @24#. 

We now recognize the fact that the reaction pp→ppp0 

near threshold is sensitive to short-range exchange me
nisms in the two-nucleon system, because the main pion
change term is prohibited by isospin conservation. Soon a
the frst accurate total cross section measurement with
electron-cooled beam @5#, it was realized @25,26# that pion 
production on a single nucleon underestimates the empi
cross section by about a factor of 5. Lee and Riska prop
@27# that this shortfall of the theoretical cross section mi
be explained by the omission of pair diagrams with an 
changed heavy meson (s, v). This was confrmed quantita
tively @28#. Subsequently, the role of residual, virtual pi
exchange was found to be not necessarily small @29,30#. 
However, at this time the role of pion rescattering is s
controversial, especially since feld theoretical models 
chiral perturbation theory @31,32# disagree on the sign of th
pion exchange amplitude. On the other hand, the importa
of heavy-meason exchange also has been questioned @33#. 
Additional short-range mechanisms have been studied
well, including transition couplings between different e
changed mesons @34# and the role of the D~1232! isobar 
@26,32,30# and the S11 and D13 nucleon resonances @35#. An  
interpretation of the reaction on the basis of approxima
conserved chiral symmetry @36,37,31,32# has, so far, not
been able to reproduce the cross section close to thres
Fully relativistic calculations have been carried out in a 
variant one-boson exchange model with parameters ftte
the amplitudes of elastic NN scattering @38,39#. 

B. Theory and polarization observables 

The impressive theoretical effort during the past dec
that is summarized in the preceding section has been m
devoted to a study of the lowest partial wave. Since, as
have seen, the energy dependence of that partial wave is
described by ‘‘trivial’’ factors, this means that, so far, on
its strength, i.e., a single experimental number, has been
fronted with theory. Some of the models mentioned in 
preceding section naturally include higher partial waves 
thus would be able to predict polarization observables. H
2-18 
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ever, at this time, such calculations have only been ca
out by groups at Osaka @40# and at Ju¨lich @30,41,42#. 

Pion production in the Ju¨lich model @43# includes direct
production, s- and p-wave pion rescattering, an intermedia
D~1232! nucleon excited state, and a contribution from p
diagrams. The latter carries an adjustable parameter; 
taken to represent those short-range mechanisms that a
explicitly included in the model. Final-state angular m
menta up to 2 are included. The prediction of the Ju¨lich 
model for some of the observables presented in this pap
shown as a dotted line in Figs. 5–8. It is fair to say that th
is little similarity between theoretical estimates and the d
We hope that the theoretical community views this disag
ment as a challenge. 

Finally, we point out that the experimental informati
now available offers the possibility to discuss individual 
action amplitudes, and that a comparison with theory sh
take place on this level. Such a study is currently in progr

VI. SUMMARY AND CONCLUSIONS 

We have studied the reaction pp→ppp0, kinematically 
complete, with a polarized beam and a polarized target.
experiment relies on the advantages offered by the use 
internal target in a storage ring. The experiment has b
carried out at four bombarding energies between 325 
400 MeV. In this energy range the Ss partial wave ceases t
be dominant, and higher partial waves become impor
~see Fig. 14!. 

Throughout the present energy region, the number of 
nifcant partial amplitudes is still small ~at most 12!. Under
these conditions, it is feasible to expand the observables
a complete set of angular functions. The expansion co
cients are determined from the data. This results in a pa
etrization of the fndings of this experiment and allows o
to calculate any analyzing power or correlation coeffci
for any confguration of the three-body fnal state. We 
clude as an appendix the necessary framework to dis
polarization observables in a reaction with polarized spin
collision partners and a three-body fnal state. 

From a formal partial-wave analysis we learn that the 
plitudes can be arranged into the two groups ~Ss, Sd, Ds! and 
~Ps, Pp!, and only amplitudes within one group can interf
with each other. We also see that in the coeffcients of
angular distributions, terms that represent the interfere
between ~SsSd! and ~SsDs! amplitudes, always occur in 
sum with a term that contains only Pp waves. These sum
then become a single parameter in the analysis. Thus
contribution from Sd and Ds partial waves cannot be de
duced from the angular distribution and must rely on a st
of the energy dependence. However, we fnd no evide
that terms that contain Sd and Ds partial waves depart in
their energy dependence from what is expected for the c
peting Pp wave alone. 

The formalism presented in this paper shows that i
possible to calculate the observables from the partial-w
amplitudes directly. Embedding this calculation into a ftt
procedure would allow one to discuss the constraints on
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dividual amplitudes that follow from the present measu
ment. Such an amplitude analysis is currently in progres
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APPENDIX: PARTIAL-WAVE FORMALISM 

1. Expansion of the reaction amplitude 

We present here the details of the partial-wave formal
which was employed to determine the form of the angu
distributions of the cross section and polarization obse
ables, Eqs. ~11!. The main diffculty for reactions such a
pp→ppp0 is to understand how a partial-wave expans
can be carried out for situations in which the fnal state 
three particles. 

We work in the c.m. frame and adopt coordinates r and r 
conjugate to the momenta p and q of Fig. 2. The symbol C 
represents the full wave function of the system that evo
from the pp initial state, and we wish to focus on the co
ponents of C which correspond to some three-body chan
b. We know from Ref. @44# that for reactions leading to
three-body fnal states, the outgoing wave in the asymp
region is of the form 

i jRbe 
Cb~r,r!→ f b~p,q;ki !, ~A1!

5/2Rb 

where ki is the initial momentum. The quantities j and Rb 
are given by 

j252Am1m2Eb /\
2 ~A2! 

and 

2Rb5~m1r 21m2r2 !/Am1m2, ~A3! 

where m1 and m2 are the reduced masses associated with
coordinates r and r, and Eb is the available kinetic energy i
the fnal state. 

If the particles have spin, we may construct a wave fu
tion with spin projections sa and sb for the two particles in
the initial state, and the full wave function C that evolves 
from this initial state will contain outgoing waves with va
ous fnal-state spin projections s1 , s2, and s3. It follows 
that the reaction amplitudes f b must carry all fve spin labels
Isospin projection quantum numbers may be incorporate
a similar way. 
2-19 
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Formal expressions for the reaction amplitudes can be
tained by employing a three-body Green’s function @45# in 
conjunction with a Lippmann-Schwinger-like equation ~see 
Ref. @44#!. The result for the asymptotic wave function 
channel b is 

1/2 i jRb2 e Ebm1m2
Cb~r,r!→ i ~A4!S D 5/2 ~2p\2!2 ^c f uVbuC&,

pj  Rb 

where Vb is some kind of interaction potential and 

ikŁrc f5e eiqŁrf1f2f3 . ~A5! 

In this last formula the f i ’s are the internal wave function
of the particles in the fnal state. For pp→ppp0 these are
just spin and isospin wave functions. The matrix elemen
Eq. ~A4! implies integration over all coordinates of the pro
lem, and the actual dependence of Cb on r and r is con-
tained in the ei jR/R5/2 factor. The formula for the reactio
amplitude can simply be read off from Eq. ~A4! with the 
help of Eq. ~A1!. 

To obtain a partial-wave expansion of f b we need to ex-
pand both C and the outgoing plane waves in terms of 
gular momentum eigenfunctions. One begins by dividingC 
into two parts, 

C5c i1F, ~A6! 

where c i is the unscattered incident plane wave and F is 
everything else. For c i we write 

s ta sb h a htb eiki
Łr i ,c i5x a x b ~A7!b a 

where the x ’s and h ’s are spin and isospin wave function
respectively. 

For the angular momentum expansion we choose b
states that are simultaneous eigenfunctions of the initial 
spin si , orbital angular momentum l, total angular momen
tum J, and total isospin t, with the coupling orders
@(sa ,sb)si ,l #J and (ta ,tb)t. We use the symbol n to denote 
initial state quantum numbers J, l, si , and t. Then, by em-
ploying standard angular momentum identities ~see, for ex-
ample, Ref. @46#! we obtain 

c i54p( ( ^sasa ,sbsbusis i&^sis i ,lluJM& 
n M ,l,s i ,t 

3 ^tata ,tbtbutt& j l~kir i ! Y M ,t Yl 
l* ~ k̂i !, ~A8!n 
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where Yn is the angular momentum/isospin function: 

M ,tY 5n ( ^sasa ,sbsbusis i&^sis i ,lluJM& 
sa ,sb ,s i 
l,ta ,tb 

l sa sb hta htb3^tata ,tbtbutt& i l Yl ~ r̂ i ! x x . ~A9! a b a b 

One can easily argue that the full wave function C must 
have the same basic angular momentum structure as c i . To  
see this we write the Bessel function j l in terms of spherical
Hankel functions so that c i becomes a sum of ingoing an
outgoing spherical waves, each having well-defned quan
numbers. For example, the ingoing wave in a given ang
momentum channel will have the asymptotic form 

1( in) 2 i (ki r i2 lp/2) Y M ,t x →2S D e . ~A10!n n2ik i r i 

We then assume that whatever interactions are present
serve total angular momentum and total isospin. These in
actions affect the outgoing waves but do not alter the ingo
wave, and so it follows that the full wave function will be 
the form 

C54p( ( ^sasa ,sbsbusis i&^sis i ,lluJM& 
n M ,l,s i ,t 

3^tata ,tbtbutt& FM ,t Yl 
l* ~ k̂i !, ~A11!n 

M ,t ( in)where F is the wave function that evolves from x .n n 
Although the exact form of Fn may not be known, by ou
assumptions it must be an eigenfunction of J, M, t, and t. 
The formula in Eq. ~A11! is our working equation for the
expansion of C. 

The three-body fnal state wave function given in E
~A5! must also be expanded in terms of angular momen
eigenfunctions. For now we keep the discussion general
allow all three particles to have nonzero spin. Symbolica
the coupling order we adopt i
$@(s1 ,s2)sf ; l p# j :@s3 ; l q# j 8%J8 for the angular momenta an
@(t1 ,t2)t f ;t3#t8 for the isospins. The corresponding angu
momentum/isospin functions are 
M8,t85Y b ( ^s1s1 ,s2s2usfs f&^sfs f ,l p 
s1 ,s2 ,s3 ,s f ,m,m8 
t1 ,t2 ,t3 ,t f ,lp ,lq 

p1 l lp lq s13^t ft f ,t3t3ut8t8& i l q Y ~ p̂! Y ~ q̂! x1l lp q 

lpu jm&^s3s3 ,l qlqu j 8m8&^ jm, j 8m8uJ8M 8&^t1t1 ,t2t2ut ft f& 

s2 t3x2 x3 
s3 h1 

t1 ht 
2

2 h3 , ~A12! 

where in this context b is shorthand for the fnal-state quantum numbers l p , l q , j, j 8, J8, sf , t f , and t8. The expansion of c f 
in terms of the Y functions is 
2-20 
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c f5~4p!2 ( ^s1s1 ,s2s2usfs f&^sfs f ,l plpu jm&^s3s3 ,l qlqu j 8m8&^ jm, j 8m8uJ8M 8&^t1t1 ,t2t2ut ft f& 
b

(
M8,s f ,t f ,t8 
m,m8,lp ,lq 

l* p l* q M8,t83^t ft f ,t3t3ut8t8& j l ~pr ! j l ~qr! Y ~ p̂! Y ~ q̂! Y b . ~A13! 
p q l lp q 

We may now obtain the partial wave expansion of f b by substituting Eqs. ~A11! and ~A13! into Eq. ~A4!. The result is 

1/2 4Ebm1m22s1 ,s2 ,s35 if sa ,sbsbusis i&^sis i ,lluJM&^tata ,tbtbutt&^s1s1 ,s2s2usfs f&S D ( ^sas ,sb pja \4 
n,b,M ,M8l,s i ,t,t8 
s f ,m,m8,t f ,lp ,lq 

3^sfs f ,l plpu jm&^s3s3 ,l qlqu j 8m8&^ jm, j 8m8uJ8M 8&^t1t1 ,t2t2ut ft f&^t ft f ,t3t3ut8t8& 

l lM8,t8uVbuFM ,t&Yl 
l * ~ k̂ p q ˆ !.3^ j l ~pr ! j l ~qr!Y b i ! Yl ~ p̂ ! Yl ~q ~A14!np q p q 

At this point we can simplify the result by assuming that the interaction potential Vb is a rotational scalar in both ordinar
and isospin space. It follows that the matrix elements are nonzero only for $J,M ,t,t%5$J8,M 8,t8,t8%. Furthermore, we know
from the Wigner-Eckhart theorem that, for a given set of quantum numbers n and b, the matrix elements are independent
both M and t. With this in mind we adopt the shorthand notation 

M ,t M ,t&,Ua~e!5A2J11 ^ j l ~pr ! j l ~qr! Y b uVbuFn ~A15! 
p q 

where, as in Eq. ~10!, a is shorthand for the full set of initial- and fnal-state quantum numbers. We see from Eq. ~A15! that 
the matrix element Ua depends explicitly on the momentum parameters p and q. These parameters are constrained by 
requirement that the total kinetic energy in the fnal state must be Eb , and therefore U is effectively a function of the energ
sharing parameter e. 

To obtain our fnal expression for the reaction amplitude we adopt the coordinate frame of Fig. 1, in which the z axis is 
along ki . The result is 

8iA2 Ebtm1m2s1 ,s2 ,s35f s ,sb \4 ( ^sasa ,sbsbusis i&^sis i ,l0uJM&^tata ,tbtbutt&^s1s1 ,s2s2usfs f& 
a Aj a,m,s i ,t 

s f ,mp ,mq ,t f ,lp ,lq 

3^sfs f ,l plpu j pmp&^s3s3 ,l qlqu j qmq&^ j pmp , j qmquJM&^t1t1 ,t2t2ut ft f&^t ft f ,t3t3utt& 
1/22l 11 

lp lq3F G Ua~e! Yl ~ p̂! Yl ~ q̂!. ~A16! 
2J11 p q 

Equation ~A16! simplifes considerably if we specialize for pp→ppp0. In this case the isospin Clebsch-Gordan coeffcie
become constant numerical factors. In addition s3 is zero and l q5 j q . The result is 

1/28i Ebtm1m2 2l 11s1 ,s2 5f ( F G ^sasa ,sbsbusis i&^sis i ,l0uJM&^s1s1 ,s2s2usfs f&^sfs f ,l plpu jm& s ,sb \4 
a Aj a,M ,s i ,m 2J11 

lp ,s f ,lq 

l lp q3^ jm,l qlquJM& Ua~e!tY ~ p̂! Y ~ q̂!. ~A17!l lp q 
rs. 
a-

e  
tio ction 
ow
d
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2. Cross section and polarization observables 

In most respects, the procedure for obtaining the obs
ables from the reaction amplitude is the same as for reac
with two-body fnal states. In particular one can sh
that the fvefold differential cross section for a three-bo
fnal state is proportional to f b f b * ~averaged over initia
spin states and summed over fnal spin states!, where the
06400
proportionality constant involves only kinematic facto
For our purposes it is useful to introduce a ‘‘reaction m

rv- trix’’ M directly proportional to f, with normalization chosen
ns in such a way that the spin-dependent partial cross se
 Ds for reactions leading from initial state sa ,sb to fnal 

y state s1 , s2, with p̂ and q̂ in the intervals DVp and DVq , 
and with the energy-sharing parameter e in the interval De is 
given by 
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s1s2uDs5uM 2DeDVpDVq . ~A18! 
as sb 

For the case in which e is taken to be the pp relative kinetic 
energy @as in Eq. ~21!# the result for M is 

1/2 1/2m1m2pq 2l 11s1 ,s2 58i s ,sb 
F G ( F GM

a v i\
5 

a,M ,s i ,m 2J11 
lp ,s f ,lq 

3^sasa ,sbsbusis i&^sis i ,l0uJM& 

3^s1s1 ,s2s2usfs f&^sfs f ,l plpu jm& 

3^ jm,l qlquJM& UatYl 
l

p~ p̂ ! Y
l 
l

q~ q̂!, ~A19! 
p q 

where v i is the relative velocity in the initial state. 
The differential cross section and polarization observa

may now be obtained directly from the reaction matrix M. In  
general, the observables O are found by taking the trace of 
matrix product, i.e., 

O5Tr@MTM†#, ~A20! 

where T is the appropriate operator. To obtain the unpo
ized cross section, the partial cross sections of Eq. ~A18! are 
to be summed over fnal states and averaged over in
states with the result 

1 
s05 Tr@MM†#. ~A21! 

~2sa11!~2sb11! 

The polarization observables are obtained by using
appropriate spin operators for T in Eq. ~A20!. For the ana-
lyzing powers the operators we want are the Pauli matr
and the result is 

1 
s0Ai05 Tr@Ms iM

†#, ~A22! 
~2sa11!~2sb11! 

where the subscript i can be x, y, or  z. In a similar way, the
spin correlation parameters are obtained by using for T the 
direct product of the Pauli matrices for beam and target 
ticles: 

(b)s0Ai j 5 
1 

Tr@Mts i ^ s ( 
j
t)tM†#. 

~2sa11!~2sb11! 
~A23! 

Obtaining the partial-wave expansions is simplifed c
siderably if one introduces spherical tensor spin operato
use in place of the Cartesian spin operators that appe
Eqs. ~A22! and ~A23!. The new operators transform und
rotations like the spherical harmonics and are defned,
each particle, by the equations 

t005I , 

t105sz , 
06400
1 
t16157  ~sx6 isy!, ~A24!

A2 

where I is the 232 unit matrix. Associated with these op

es 
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erators, there is corresponding set of ‘‘spherical tensor’’ 
larization observables @47# 

1 (b) (t)Tk1q1 ,k2q2 
5 Tr@Mtk1q1 

^ tk2q2 
M†#. 

~2sa11!~2sb11! 
~A25! 

From the defnitions given above, it is straightforward
fnd simple relationships between the Cartesian analy
powers and spin correlation coeffcients and the sphe
tensor observables. The relevant formulas are 

s05T00,00 , 

s0 Ay052A2 Im  @T11,00#, 

s0 Az05T10,00 , 

s0 Azz5T10,10 , 

s0 AS522 Re  @T11,121#, 

s0 AD52 Re  @T11,11#, 

s0 Axz52A2 Re  @T11,10#, 

s0 AJ52 Im  @T11,121#. ~A26! 

The introduction of the spherical tensor spin operat
leads to a compact, general formula for the partial-wave
pansion of the observables. The simplifcation comes f
the fact that the spin operators of Eq. ~A24! can be repre-
sented in angular momentum language: 

^sutkqus8&5~2 !s2s8A2s11^ss,s2s8ukq&. ~A27! 

To obtain the partial-wave expansion formula we n
substitute this expression, along with Eq. ~A19! for M, into 
Eq. ~A25!. The angular dependence of the observable
expressed as an expansion in terms of bipolar harmonic

BL 
L ~ p̂,q̂!5 ( ^LpLp ,Lq LquLQ& YL 

Lp~ p̂! YL 
Lq~ q̂!. ,L ;Lp q p qLp ,Lq 

~A28! 

After carrying out an angular momentum reduction t
eliminates the sums over the magnetic quantum number
obtain the result 

1 16 m1 m2 p q
Tk1q1 ,k2q2 

5 S v i p \5 D~2sa11!~2sb11! 

a,a8;k3 CL Ua~e! U* ~e!;L( F ( p ,Lq a8 GLp ,Lq ,L a,a8 

Q3BL ~ p̂,q̂!, ~A29! ,L ;Lp q
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where the label k is shorthand for the indices k1q1 ,k2q2 and 
where Q5q11q2. 

Equation ~A29! represents our central result for th
partial-wave expansion of the cross section and polariza
observables. Each observable has a set of allowed an
dependences, BL

Q ( p̂,q̂), and the factor inside the squa,L ;Lp q 

brackets gives the expansion coeffcient. Each of these c
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u
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06400
 
on 
lar 
 

ef-

fcients is a sum of terms involving an angular moment
coupling coeffcient C and a bilinear product of matrix ele
ments Ua . The selection rules that determine which part
wave combinations contribute to a given angular function
contained in the C coeffcients. 

The angular momentum coeffcients are given by the 
lowing expression: 
a,a8;k 81 l 81 l 1si2J2siCL ,L ;L5~2 ! l p q 81J8 dsf ,s8 ( @~2sa11!~2sb11!~2k111!~2k211!~2K11!3~2I 11!~2si11!~2si811! 
p q f I ,K 

811!~2 j 11!~2 j 811!~2J11!~2J811!#1/2 ^ l0,l80uI0&3~2l 11!~2l 811!~2l p11!~2l 811!~2l q11!~2lp q 

si J l 

3^I0,KQuLQ&^ l p0,l80uLp0&^ l q0,l80uLq0&^k1q1 ,k2q2uKQ& W~ j ,sf ,Lp ,l 8 ; l p , j 8! si8 J8 l 8 p q p H J 
j l q J sa k1 

3 j 8 l 8 J8 sb sb k2 .qH J H sa J 
Lp Lq L si si8 K 

K L I 

~A30! 
ws 
y in-

e 
t 

nts 

-
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ical 

 in-

 spin 

 Eq. 
 it 
on 
This equation differs from the analogous formula given
Ref. @9# in two respects. First of all the Clebsch-Gordan 
effcient ^ l0,l80uI0& was inadvertently omitted in Ref. @9#. 
Second, we have changed the coupling order for the an
momenta in the initial state @see Eqs. ~A8! and ~A9!# and this 
results in additional phase factors in C. 

Although the expression given in Eq. ~A30! is fairly com-
plex, the coeffcients are easily evaluated since comp
codes for calculating the Clebsch-Gordan, Racah, andj 
symbols are readily available. 

The expansion formulas given in Eq. ~11! are obtained
most readily by substituting Eq. ~A28! into Eq. ~A29! to 
obtain 

1 16 m1 m2 p q
Tk1q1 ,k2q2 

5 S D~2sa11!~2sb11! v i p \5 

a,a8;k3 ( F ( XL ,L ,m Ua~e! U* ~e!Gp q a8Lp ,Lq ,m a,a8 

m Q2m3YL ~ p̂! YL ~ q̂!, ~A31! 
p q 

where the coeffcients X are given by 

a,a8;k a,a8;kXL 5( ^Lpm,Lq Q2muLQ& CL . ~A32! ,L ,m ,L ;Lp q p qL 

Equations ~11! are then obtained by using Eq. ~A31! in con-
junction with Eqs. ~A30! and ~A32! assuming that only the
partial waves of Table I contribute and that terms quadr
in Sd or Ds are negligible. In general, one fnds that only
few distinct angular functions are allowed for each obse
n 
-

lar 

ter 
9 

tic 
 

v-

able. The constraints, which arise from conservation la
and the antisymmetrization requirements, can be seen b
specting Eq. ~A30!. 

The frst constraint comes from the dsf ,s8 factor. For pp
f 

→ppp0, sf is the pp total spin quantum number. Since w
have only antisymmetric pp states, the conclusion is tha
there will be no interference between even l p and odd l p 
partial waves. 

The next constraint is on the allowed values of Lp . This 
constraint comes from the Clebsch-Gordan coeffcie
^ l p0,l80uLp0& which requires that l p l 8 and Lp satisfy thep p 

triangle inequality and also that l p1 l 81Lp be even. Therep 
are analogous constraints on Lq . Thus, for example, interfer
ence between Ps and Pp may give rise to angular distribu
tions with Lp50 and 2 and with Lq51. For the conditions
we assume, the angular distributions involve no spher
harmonics of degree greater than L52. 

One can easily demonstrate from Eq. ~A30! that X coef-
fcients are either symmetric or antisymmetric under the
terchange of a and a8: 

a,a8;k a8,a;kXL ,L ,m5~2 !k11k2XL ,L ,m . ~A33! 
p q p q 

This means that the unpolarized cross section and the
correlation parameters depend only on Re@UaU* # whereas a8 
the analyzing powers depend only on Im@UaU* #. One con-a8 
sequence is that the factor inside the square brackets in
~A29! is either purely real or purely imaginary. From this
follows that a given observable will depend either 
Re@YL 

m ( p̂) YQ
L 

2m(q̂)# or on Im@Ym 
L ( p̂) YQ

L 
2m(q̂)#, and as a 

p q p q 
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result the f dependences of the allowed angular distributio
are relatively simple. In particular we see that s0 Az0 and 
s0 AJ ~both of which have Q50) go as sin@m(fp2fq)#, 
while the remaining observables go as cos@m(fp2fq) 
w
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s 1Qfq]. 
The formalism outlined in this appendix leads to a nu

ber of additional useful results that are described in the m
text and in other publications. 
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