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Complete set of polarization observables ilﬁﬁ—»ppwo close to threshold
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In a kinematically complete experiment we have measured the two analyzing powers and the five spin
correlation coefficients of the reactiqiqﬁﬂppwo as a function of all five parameters of the three-body final
state for bombarding energies between 325 and 400 MeV. The data are in disagreement with the theoretical
predictions available at this time. Below 400 MeV, fewer than a dozen complex partial-wave amplitudes are
likely to be significant, and it is expected that the present experimental information constrains these ampli-
tudes. We also describe the formalism for an expansion of the spin observables into a complete set of angular
functions and use this to completely characterize the polarization information obtainable from reactions with
polarized spin-1/2 collision partners and a three-body final state.

DOI: 10.1103/PhysRevC.63.064002 PACS numbeds): 24.70.+s,24.80.+y, 25.10.+s29.20.Dh

[. INTRODUCTION production in the nucleon-nucleon system is related to spe-
The behavior of a system consisting of two nucleons andific technical advances. The first was the development of
a pion is basic to classical nuclear physics. It is thus aaccelerators with sufficient energy, which led to the first ob-
important task to try to relate the process of pion productioservation of the p— pp=® reaction[1] just a few years after
in a nucleon-nucleonNN) collision to our understanding of the pion was discoverg@] and 17 years after it was pre-
the NN interaction or to constraints given by basic symmedicted by Yukawd3]. The second was the construction of
tries, or, ultimately, to a model that features the constituentmeson factories with intense, well-defined proton beams that
of nucleons and mesons. The theoretical task was expectethde possible accurate and kinematically complete cross
to be relatively simple at energies very close to thresholdection measurements, and the third was the advent of stor-
because only a single angular momentum channel contrilzge rings with electron-cooled beams and internal tafggts
utes. which started to operate in the late 1980s, and which opened
Triggered by the advent of new cross section data close tgp the near-threshold region for experimental study.
threshold, there has been a flurry of theoretical activity dur- Measurements of pion productionpip collisions benefit
ing the past five years devoted to an understanding of tfeom storage ring technology mainly in two ways. The first
lowest partial wavdsee Sec. V A for more details on the concerns the use of windowless internal gas targets. Such
current status of the theory). Even though this work is stiltargets put only hydrogen gas into the path of the beam and
going on, it is clearly important to also investigate the highemake it possible to measure smafi— pp=° cross sections
partial waves which become active as the bombarding ewnery close to threshold with little contamination from undes-
ergy is increased. In order to identify the role of individualired reactions. In addition, the amount of material between
partial waves, the use of polarized collision partners is essethe target volume and the detector can be made small, and
tial. the momenta of both outgoing hadrons can be measured ac-
Each of the three periods of activity in the study of pioncurately. Thus, the complete kinematics of each event can be
determined. Internal targets must be thin in order for the
cooling process to keep up with target heating, but this limi-
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FIG. 1. Coordinate frame. Theaxis is along the beam direc-
tion, they axis is pointing up, and theaxis completes the right-
handed coordinate system. The direction of a ve7ct9rgiven by a
polar angled and an azimuthal anglg.

FIG. 2. The momenta and of tgp— pp=? final state in the
center-of-mass system. Particle numbers 1 and 2 are the two pro-
tons with momenté, andb,. The proton momentum in thpep rest
waves is small. In fact, at energies below 320 MeV, only onegystem is given bp=(b,—b,)/2 and the center-of-mass momen-
partial wave is significanithe Ss partial wave with the an-  tym of the pion(3) by q=— (b, +b,).
gular momenta of the final-stapgp pair as well as the pion
equal to zero). In one of the first nuclear physics experiment§€ observables from the measured quantities. In Sec. IV a
with a stored, cooled beaff], the total cross section in this Scheme is introduced to completely map out the spin depen-
energy region was measured, revealing a serious disagrétence of the reaction everywhere in the five-dimensional
ment with the theory at that tinisee Sec. V A). For bom- phase space, and results are presented. Finally, Sec. V is

barding energies larger than 320 MeV, additional partiaf!€voted to a discussion of the present status of the theory, a
waves come into play but their number is stil reIativercompa”Son of some of the data to recent calculations, and a

small since below about 400 MeV final-state angular mol—ISt of conclusions from the present experiment.

menta I_arger than one shoulq be unimportant. With this limi- Il POLARIZATION OBSERVABLES
tation, it is possible to provide an expression for the most . o
general dependence of any observable on the angles of the A. Basic definitions

three outgoing particles. For the present study, this point is |n 3 reaction with two outgoing particles it is customary to
crucial for two reasons. First, we use the angular dependenggate the coordinate frame to the reaction plane. With a
given by these expressions to formulate a strategy to ordgree-body final state there is no such distinguished plane, so
and present the information available from an experimenie use a Cartesian coordinate frame that is fixed in space.
with polarized beam and target by defining an appropriate sghe z axis is along the beam direction, thexis is vertical,

of single-valued “observables” that characterize the comypointing up, and th& axis completes the right-handed coor-
plete five-dimensional phase space. Second, it allows us thnate system. The polar angleand azimuthal anglé, as
carry out an analysis of the data in terms of the coefficiendefined in Fig. 1, are used to specify the direction of any
that appear in these expressions. The resulting coefficiertsctor.

completely parametrize the polarization observables of the In this experiment we detect the energy and direction of
reaction and constrain participating amplitudes individuallythe two final-state protons of the reactipp— pp=°. Let

This constitutes a powerful and detailed test of any theorythe center-of-mass momentum of the two protonglband

Prior to this experi[)nent, the world’s polarization data forg 14 gescribe the final-state kinematics we define the mo-
the reactionpp—ppm° below 400 MeV consisted of just tag andd. wheren= (B —B.)/2 (th i i
two analyzing power measuremefn7]. In this paper we _men ap andq, wherep= (b, —~b,)/2 (the proton momentum

describe a complete measurement of this reaction coveridg the pp rest systemjand g=—(b,+b;) (the center-of-
most of the available phase space, carried out with a polafass momentum of the pion; see Fig. 2). Five independent
ized beam on a polarized target at bombarding energies Héarameter§ are rleeded to describe the final state, namely, the
tween 325 and 400 MeV. All polarization observables aldirectionsp and g and an “energy-sharing” parameter
lowed by parity conservation have been measured. Since wéhich we will later define as the kinetic energy of the two
are dealing with a three-body final state, these observabléigal-state protons in their rest systésee Eq(21)]. All five
depend on five kinematic variables. Section Il of this paper iparameters follow from the observation of the two protons.
concerned with the definition of polarization observables an&or brevity, we sometimes denote the{g&f, ¢, 04, ¢4, €}

their dependence on the kinematics of the final state. Sectiday €.

[l contains a description of the apparatus, an account of the The largest possible value of the pion momentum is given
acquired data, and a description of the method used to extrdmt (we setc=A=1)

1

Omax— > \/g

VIs—(2mp+m,)?I[s—(2m,—m,)?], @
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where /s is the total center-of-mass energy, andandm,, Ay 0p,0p,0q,¢0q) =Axd 0, 0p— /2,04, pq— m2),
are the masses of the proton and the pion, respectively. In- (6b)
stead of the bombarding energy, one often quotes the param-
eter Axy( Op.¢p.bq v@q)"'Ayx( Op,¢p,bq r‘Pq)

7= Qe M, 2) =As(0p,0p— 4,04, 0q— T4). (6c)

If the two particles in the initial state are identical, measure-
_ ¢ - ments with interchanged beam and target polarization states
loosely corresponds to the energy region with'l, i.e., st be equivalent. It is straightforward to show that if parity

below 400 MeV. _ _ is conserved, the identity of the particles in the initial state
The polarization of an ensemble of spin-1/2 particles MaYequires

be described by the expectation value of the three-

component Pauli spin operat(see, e.g., Ref.8]). In the Aij(0p,@p.0q,0q) =Aji(T— 0y, 0p+ T, 7— g, @q+ ).
following, we denote the polarization of the beam and the (7)
target by the two vectors|5=(Px,Py,PZ) and Q
=(Qx.Qy,Q,), respectively.

which vanishes at threshold. The term “near threshold”

Applying the relations in Eq$5)—(7), we find that for the
reactionpp— pp=° there are the following seven indepen-
dent polarization observables:

B. Definition of observables

We abbreviate the differential cross section for the reac- o8, An(8), As(£), A&, AE), Ax(E),

tion, initiated by a polarized beam on a polarized target, by — aA_(¢). (8)
- . da(6,,0p,04,9q.€,P.Q) The fact that the two nucleons in the final state are also
o(§,P.Q)= dQ,dQ,de ' 3 identical requires that all observables must be invariant un-

der the transformatiop— — p. This means that the phase

and writeoy(&) for the cross section that would be measuredpace of the final state has two identical halves. In the analy-
without polarization. In terms of the so-called Cartesian posis of the present experiment this is taken into account by
larization observables, the spin-dependent cross section bedways labeling the protons 1 and 2 in such a way that 0
comes < 6p,<=m/2. Consequently, results are presented onlygfor

in this range, and when calculating a total cross section, the

0, integral extends only from O te/2.
1+2i: PiAi0(§)+§j: QjAoj(£) pFor reactions with two colliding spin-1/2 particles, one

can define three total cross sections, two of which depend on

o(¢,P,Q)=0o(£)-

the spin. These total cross sections are related to the observ-
+|§J: PiQjAij(£)|. @4 aples in Eq(8) by
Here,i andj stand forx, y, orzand the sums extend over all gtot:f oo(£)dQ,dQde, (9a)
possibilities. The resulting 15 polarization observables in-

clude the beam analyzing powekg, the target analyzing

powersAg;, and the spin correlation coefficierdg . It is AUT:_f oo §)As(£)dQ,dQde, (9b)
convenient to define the following combinations of spin cor-

relation coefficients:

Ao :—ZJ oo(E)A,L6€)dQ,dO de, (9c)
As(§)=Aul &)+ Ay (), (5a) : ae P
. where dQ) =d coséde, and the integration extends over 0
As(E)=Ax(£) = Ay (£), (5b) <Oq=m, 0<6p,=<7/2 and O<e<epy. The possible value
for Ao /oot andAo/oy ranges betweern 2 and+2.
Az(8)=Ax (&) —Ayx(§). (5¢)

o . C. Angul t
The 15 polarization observables of E4) are not inde- nguiar mementum

pendent. For instancé,, and A, are equivalent because 1. Partial waves

the radiation pattern observed with a beam E)olarized zidong Let us denote the angular momentum of the colliding pro-
is the same as when the beam is polarized alpegcept for tons byl, their channel spin by, and the total angular
a rotation by 90° around theaxis. This and other, similar, momentum by. In the final state, angular momentum, chan-

“rotational” equivalences are given 49| nel spin, and total angular momentum of the proton pair are
given byl,, s¢, andj, respectively, and the angular momen-
Axo( O 0p 1 0q:0q) =Ayo( O, ppt 2,04, 0q+ 7/2), tum of the(spinless)pion, relative to the center of mass, by

(6a) I,. This set of quantum numbers, denoted collectively by
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a={1,s,3.1,,5¢.i.lq} (10) TABLE I. Angular momentum quantum numbers for the partial
waves of the reactiopp— ppx°. The Sd and Ds amplitudes have

fully identifies the amplitudes), for transitions from a been included for completeness sake; the present experiment finds
given initial to a given final state. These amplitudes are fund10 evidence for their significance.

tions of the energy-sharing parame¢eand the total energy.
The quantum numbers in E@.0) are constrained by angular TYP€
mpmgntum and parity conservation as 'WeII as 'by the Paulig 3py—15y,s
principle. Because close to threshold it is realistic to assu

23i+1|J_>25f-*—1|pj’|q

g .3
thatl, andl, are either 0 or 1, the possible choices for the 13‘;_};;2’55
angular momentum in the final state are thég,l%) Pp 3p _.3p ’p
=(0,0), (1,0), and(1,1), orSs,Ps, andPp. In pp—pp 3P°H3P1’
there areno Sp final states permitted by the usual symmetry 3P2H3P1’p
constraints of parity and angular momentum conservation 3F2 3P2‘p
and the Pauli principle. A list of all transitions with these 3F2_)3Pl'p
constraints can be found in Table I. For completeness, we 5 2_’3 2:P
have included in Table I the transitions with= 2, 1,=0 3Pl_>3P0'p
(Ds)andl,=0, 14=2 (Sd). Since these amplitudes can inter- 3Pl_>3pl'p
fere with the importantSs amplitude, their contribution 1= Pap
might be non-negligiblg10]. The list in Table | follows the F3—"P2,p
conventional notatiorf® " ;25| | j 1, where the spec- Sd *Py—1Sp,d
troscopic notation,I( 1,)=S, P,D, F, ... andl,=s, p, d, *F,—1S.d
f... is used. Ds *P,—'Dy,s

%F,—'D,,s

2. Angular distributions of the observables

Since close to threshold only relatively few amplitudes Based on this partial-wave expansion, we have deduced
contribute topp— ppm?, it is feasible to expand the observ- equations that contain the dependence of the observables on
ables in terms of angular momentum. In the formalism wéhe four angles that describe the final-state kinematics. The
use, the expansion functions are products of two sphericavailability of such a set of equations is of crucial impor-
harmonics with argumenfs andg, and the expansion coef- tance for the present work because it shows us how to ana-

ficients are a sum of terms, where each term contains thi€ the measurement in view of the complexity of a five-
. * . imensional phase space, and it guides us in defining a
product of two amplitudesU,U,, times an angular- reasonable and complete set of observables that describes

momentum coupling factor. The coupling factor is oftenthis complexity. It will be seen later that these equations
zero, reflecting the constraints arising from conservatioprovide a sufficient framework, since they are able to repro-
laws and antisymmetrization. For instance, one finds that thuce the measured angular distributions. The following set of
amplitudes can be arranged into the two gra@ssSd, Ds)  equations represents the general angular dependence of the
and (Ps, Pp), and only amplitudes within one group canspin-averaged cross section(£) and the spin dependent
interfere with each other. The details of such an expansioecross sectionsy(£)A;;(£) in terms of the real coefficients E,
into partial waves are given in the Appendix. Fk, G, Hi, I, andK. Note that we usé ¢=¢,— ¢q:

0o(€)=E+F1+Hg’+ (H{™ 1)(3 co$8,— 1)+ (H3*+F,+K)(3 cogd,— 1)+ H33 cog,—1)(3 cogg,— 1)

+H$%sin 20,sin 20,c0sA¢p + HY%ir? 6,sirf 6,c0s2A ¢, (11a)

oo(&)Ayo(8)=[{GY°+G¥%(3 cogh,— 1)}sin ,+ {H{ +1Y°+ HY(3 cogd,— 1)}sin 26,]cose,
+[HY+KY+ G¥ cosh, + HY (3 cogd,— 1)]sin 26, cosep,
+[GY%sin 4+ HE sin 26, ]sin? 0,c08 29, — @) + HL sin 20,si? 8,08 2¢4— @p), (11b)
_ _ 3 3 _ 3 _ 3 _ _
oo(§)As(§)=2(E—F1)+Hg+(Hy+21)(3 co$6,— 1)+ (H; — 2F,+2K)(3 co$6,— 1)+ H3(3 co$6,— 1)(3 cos 6, — 1)

+Hysin 26,sin 26, cosA ¢+ HEsirg,sir?6, cos A ¢, (11c)

oo §A (€)= —E—F+HF*+ (H*1)(3 co$6,— 1)+ (H5*—F,—K)(3 cos$6,— 1) +H3(3 cogh,—1)(3 codf,— 1)
+H37sin 26,sin 26, cosA @+ HEsin? ,,sin? 6, cos A ¢, (11d)
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oo(§)Ar(E)=[H]+H3(3 co$6,—1)]sin?6,c0s 2pq+[H3 +H3(3 cod,— 1)]sir? g, cos 2p,,
+Hgsin 26,sin 26, cos ¢+ @), (11e)
oo() A &) =[{G1+ G313 codh,— 1)}sin ,+ {H "+ 1**+ H3(3 cod6,— 1)}sin 20,]cose,

+[H+ K**+ G5*cosf,+H};%(3 co$f,— 1)]sin 26, cose,,

+[G}sin 64+ HEsin 20,4]Sin? 6, o 2¢,— @q) + HEsin 260,Sin? 6, o 24— @p), (11f)
ao(€)A(&)=[HPsin 20,+ G sin 0, ]sin 26, sinA ¢+ HZsir? g,si? 6, sin 2A ¢, (11g)
ool £)Az(€)=GEsin 20,sin 6, sinA . (11h)

The letter symbols€, F,, G/, andH} distinguish terms Equations(11) explicitly depend on the four angle,
with (Ssf, (Ps)?, (PsPp), and Pp)? angular momenta in ¢p, 04, and ¢y, while the energy-sharing parameteis
the final state according to the definitions given in Tables ¢ontained in the coefficients. A discussion of the energy de-
and Il. The superscript associates the coefficient with a givependence is given in Sec. IV E.
observable, and the subscript enumerates multiple occur- When calculating the value of a polarization observable
rences of the same symbol within a given observable. Aom Egs. (11), one has to evaluate the rath;(¢)
coefficient without a superscript appears in more than ong go(§)Aij(§)/0o(§), and an overall normalization of all
observable. The coefficientsK, I'l, andK'l are associated terms in these equations cancels. Here, we choose to multi-
with SsSdor SsDsinterference terms. We note that they ply all coefficients by &?/ov,,. This makes the coefficients
always occur in conjunction with aH| term. Thus, the dimensionless. The spin-averaged total cross section is then
angular dependence alone does not provide sufficient infoRn incoherent sum of the partial total cross sections
mation to separate tht-wave contributions. All contribu- 0(SS)bio=E, o(Ps)loye=F1, and o(Pp)/ow=HY’,
tions of the amplitudes listed in Table | have been taken inttvolving the three final states witis¢y, (Ps)?, and Pp)?,
account, except those that correspond t®s){ and (Sd)? and
final state.

The physics of the reaction is contained in the values of E+F,+ Hgozl_ (12a)
the coefficientE, Fy, G{ , H} , I, andK. We will determine
these values as a way to parametrize the results of the M&gye gpin-dependent total cross sections are then given by
surement. These coefficients are bilinear sums of the reaction
amplitudes. The corresponding relations between the coeffi-
cients and the amplitudes are known, but often complicated.
They can be derived from the partial-wave expansion de-
scribed in the Appendix. Thus, in principle, it is possible to Ao loy=2E+2F,—2HZ. (12c)
construct a set of amplitudes that best describes the present
data; however, this task involves a nonlinear fit with a non-
diagonal error matrix and possible ambiguities, and is bed
yond the scope of this paper.

Aotlowg=—2E+2F;—H3, (12b)

It should be noted that not all coefficients are indepen-
ent. For instance, we know from the partial-wave analysis
(see the Appendixthat form=0, ... 5,

TABLE II. Partial waves according to the final-state angular HOO— 3 4 2z (12d)
. . m m m
momenta. The column labelédlists the symbol used in Eq&ll)
for a parameter of this type. The last column shows the powsgr of L ) )
for the expected dependence on bombarding energy for the cadd@lds. Combining Eqs(12b)-(12d) one easily derives the

where neithet, nor || is zero. important relation
Final-state angular momenta o(Ps) 1 Aor 1Ao
' ' m =—|1+ +- .

o la o la - wi(e) 7 Otot 4 Tt 2 Otot 13)
(Ssy 0 0 0 0 E qgp-f(ede -
(Psp 1 0 1 0 F q-pide 7° This relation, which holds fopp— pp#?°, allows one to
PsPp 1 0 1 1 G g®-pide 7’ determine, in a model-independent way, the total strength of
(Pp)? 1 1 1 1 H q%-pide 7® the reaction going to Bsfinal state directly from the mea-
SsSd 0 0 0 2 | gdp-fleyde - sured total cross sections. Thiseasurement of a partial
SsDs 0 0 2 0 K qp3Vflede - wavehas been presented in an earlier publicdtidr, where

the relation given in Eq.13) appears without proof.
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TABLE IIl. Bombarding energies used in this experiment,ghgarametefEqg. (2)], and the upper bound
€max ON the energy-sharing paramefeq. (21)]. Also listed are the accumulated luminosities and the prod-
ucts of beam and target polarization for the two phases of the expe(saertec. Il B).

Run A Run B

Energy 7 €max JLdt P,Q JLdt P.Q P,Q P,Q

(MeV) (MeV) (nb™h (nb™?h)

325.6 0.560 21 2.163 0.45@) 3.0 0.059(2) 0.333(2) 0.296(3)
350.5 0.707 33 0.901 0.34@) 1.3 0.053(3) 0.316(3) 0.267(5)
375.0 0.832 44 3.024 0.51#) 4.1 0.041(2) 0.333(2) 0.266(4)
400.0 0.948 55 0.831 0.526) 1.1 0.039(4) 0.289(4) 0.203(8)

Ill. MEASUREMENTS target cell is supported by the end of the feed tube. It is

possible to remotely adjust the cell position relative to the
stored beam, in order to minimize the overlap between the

The experiment was carried out with the Indiana Coolepeam halo and the cell wall. An atomic beam so(ii&3
storage ring. A detailed description of the apparatus has begalivers the polarized hydrogen atoms. This source produces
presented previously in a technical pajdet]. In the follow-  a beam of about 1 cm diameter with a flux of about 3
ing, we give an abbreviated description of the experimentak 10'® atoms per second in a pure spin state with a nuclear
setup, pointing out features that are especially important ipolarization of abouQ=0.75. The role of the target cell is
appreciating the benefits and limitations of the technique emo improve the utilization of the source output. The cell is
ployed. coated with Teflon, which practically eliminates depolariza-
tion of the atoms during wall collisions. The total thickness
of the target is a few times Foatoms/cri. The density of

A polarized 197 MeV proton beam from the IUCF cyclo-the target is determined by the gas flow through the cell,
tron was accumulated in the Cooler ring, resulting in orbitinglecreasing linearly from a maximum in the cell center to
currents of 100—20RA. The energy of the stored beam wasnear zero at the open ends. The polarization direction is se-
then ramped to the desired valder a list of energies, see lected by a magnetic guide field of a few gauss in the region
Table 1ll). The beam energy was known to better than 100f the target. This field is generated by coils exterior to the
keV, and the polarization of the beam varied between 0.6Scattering chamber, and can be oriented intthe =y, and
and 0.70. +z directions. It has been shoyi4]that the magnitude of

The experiment was conducted in two phases. During th&e target polarization does not vary significantly when the

first phase, the beam polarization was vertigbng 9)’ polarization direction is changed, and in t_he .following we
while in the second phase nonvertical polarization was use8SSUmeQ=Q,=Q,=Q, for the target polarization. During
The latter is achieved with two spin-rotating solenoids. Theiflata acquisition the direction of the target polarization is
field is held fixed during acceleration. The field integral ofchanged every 2s. o

these solenoids is limited, partly by the current limit of the Intermnal polarized targets of this kind are pure and not
solenoid, partly by difficulties in adjusting the ring optics toSUsceptible to radiation damage, and they offer the possibil-
compensate for the additional focusing. The consequence & ©f rapidly changing the polarization direction.

this limitation is that purely longitudinal beam polarization
cannot be achieved for beam energies larger than 200 MeV. _ o
Instead, for the second phase of the experiment, the actual The purpose of the detector is to measure the directions
polarization direction is abo@®/P=(0.12,0.75,0.65), some- and energies of the two outgoing protons. This is accom-

what depending on beam ene actual values, see Table plished with a stack of s_cinti_llators and \{vire .chambers that
10 P g Gy are arranged as shown in Fig. 3. The directions of the two

The filling and ramping process takes 1-2 min, followeam.ﬂgOing protons are determined by a set of four planes of

by 5—-8 min of data taking. This beam cycle is then repeate?fi\f're chambers, and the "E” and the “K” scintillator arrays

; g measure the energies of the protons.
The sign of the beam polarization is changed every cycle. The combined thickness of the E and the K detector

planes is sufficient to stop the protons from pie— p p°
reaction for up to 400 MeV bombarding energy. The light
The stored beam passes through a target cell that consiism both planes is added and then converted to the energy
of an open-ended 12 mm diameter cylindrical tube conef the stopped particle using a phenomenological expression
structed from 2% m aluminum foil. The tube is 25 cm long; for the light response, and a correction for the position-
the center of the cell defines the origin of zf&xis. Joined to  dependent light collection efficiency. The angular coverage
the side of this tube, at=0, is a similar “feed” tube that is of the detector depends on where along the target cell axis
oriented towards the incident beam of polarized atoms. Thiae event occurs. Seen from the center of the cell, the detec-

A. Apparatus

1. Beam

3. Detector

2. Target
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V. WC2 5000 -
K S 2 E
§ 4000 |

E 3 T T=375 MeV
WC1 ° Z
& 3000 -
F g i
=4 L
Cell 2000 —
1000 |
BEAy ¥
0 BT 11
0 50 200

missing mass (MeV)
FIG. 3. Detector system to detect the two outgoing protons. The
scintillators E and K measure energies and the wire chambers WC1 FIG. 4. Missing-mass spectrum of tp@— pp® reaction at
and WC2 directions. The scintillator V vetoes background event875 MeV. The dashed line shows the normalized background shape
containing energetic charged particles. The four scintillators S prosbtained with a M target.
vide a concurrent measurementpyb elastic scattering neat
=45° as a monitor for beam and target polarization. For mor@pposite thex axis or they axis). Thus, data were accumu-
details see Sec. Il A 3. lated with eight combinations of beam and target polariza-
tion (P,, Qm), namely, Py, £Q,) and =Py, £Q,).
tor stack subtends a cone with a half-angle of 35°, with a 5IE,Zun A, which took place in the fall of 1997, was thus limited

. . . 4 . to observables that are accessible with only transverse polar-
hole in the center that is required to admit the beam pipe f Y P

he circulating b his hole i ible f ¢ h‘?fation.
the circulating beam. This hole is responsible for most of the In the second phagealled “run B"), spin rotators were

departure of the detector acceptance from 100%. The CONSEmployed to generate nonvertical beam polarizatisee
guences of incomplete acceptance are discussed in Sec. IVdae |11 A 1). In this case, the beam polarization was a sum
The wall of the vacuum chamber just downstream of they tyree components(, P, P,), and the target polariza-
target consists of a 0.18-mm-thick, stainless steel window. fion was alternated between the six direction®, , +Q,,
1.5-mm-thick scintillator“F” in Fig. 3), immediately fol- and +Q,, giving rise to 12 different spin state&(S
lowing this window, provides a start signal for a time-of-+ > :5 LA 4¢P ~6.) Run B ] q
flight measurement for particle identification, and eliminates_QX)’ (£P, £Qy), and (=P, +Q,). Run B was carrie

events originating in the beam pipe downstream of the IQUt in the spring and fall of 1998. All possible analyzing
detector 9 9 PP powers and spin correlation coefficients were measured.

During both runs data were acquired at the beam energies

The E detector is divided into eight segments. The trigge\§25, 350, 375, and 400 MeV. The respective integrated lu-
for processing an event is a coincidence between the F dg

inosities, together with the values for beam and target po-
tector and at least two segments of the E detector. A VeiQrization, are listed in Table Il

issued by the last scintillator in the stack/’” in Fig. 3)
removes events where at least one particle is not stopped in
either the E or the K scintillator, and thus are not from pion

production. 1. Selecting the pp—pp° events
. . oy 0
Concurrent with the acquisition gip— ppm” eventspp Events of interest are selected off line by requiring that

lelasticlsca}teri‘r‘\g”is_ ob§erved n&?a;lb=é_15° by fogr scintil- both particles be identified as protons, that their wire cham-
ators labeled "S™ in Fig. 3). For elastic scattering events aper tracks be consistent with the patterns of responding seg-
coincidence between two opposite detectors is required. Pafie s in the various scintillator arrays, and that the origin of
ticles reaching the S detectors traverse the first set of WitBe event be in the target region. For each event the mass of
chambers(“WC1" in Fig. 3). A coplanarity condition and yhe third, unobserved particle is calculated from the four-

the known angle between the two protons provide a clegpomenta of the two protons. An example of a missing mass

selection ofpp elastic events. spectrum is shown in Fig. 4. To accept an event, its missing
mass has to be close to the mass of a neutral pion.

The amount of background under the pion mass peak var-
ies with bombarding energy but is never larger than 10%.

The experiment has been conducted in two phases. In tfidnis background is caused by reactions of protons with the
first (called “run A”) the beam polarization was vertical aluminum cell walls and with impurities in the target gas.
(along or opposite thg axis) and the target polarization was Monte Carlo studies show that only reactions with three or
alternated in 2 s intervals between four directiG@eng or  more protons in the final state contribute significantly while

C. Measured yields

B. Acquired data
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(p,2p) reactions are unimportant. The shape of the back-

ground is determined from a separate measurement where m;yz (Y+,Qm_Yan)

the hydrogen in the target cell is replaced by Whis mea- Sp=—— ) (14a)
surement results in a missing-mass spectrum that closely > (Yoo +Y o)

matches the one observed with a hydrogen target, except for m=x,y,z m m

the 7° peak, and is therefore used to subtract the background

under the pion peak. Since each target orientation occurs with both signs, this

The kinematics of the event is transformed to the centegffectively corresponds to an unpolarized target. The sum in
of-mass system, and the angles ¢,, 0, ande, as well the denominator is an average over both beam and target
as the energy-sharing parametearg calculated. For each Polarization direction, and thus represents the spin-averaged

accepted event, these parameters, together with informatigrl?ld' Note that fc_>r run B the beam polarization is not along
nane of the coordinate axes and the asymm8grygontains

on the direction of the beam and target polarization at t 8 tributi ¢ Il the th larizali i
time of the event, are stored for further processing. contributions trom afl the threée polarization components.

The three target polarization asymmetries for the target
polarization directionsn = X, y or z are given by

2. Spin-dependent yields

We define the “yield” to be the number of events in a >, vo.~Yn o)
certain regionA ¢ of phase space, defined by conditions on =+, Lo Lo b
the five kinematic variable$ of the final state. There is one S~ ' (14b)

E _ (Yn,+Qm+ Yn,me)

such yieldY, ,(&), for each combinatiomg,n) of beam and e

target polarization. For run A there are 8 and for run B 12

such combinations. The yields in different spin states argore the sum ovaer provhdes the average over the beam
always background corrected and normalized such that th%larization direction.

correspond to equal accumulated luminosity in every spin Fipally, the three spin correlation asymmetries, again with
state. This normalization compensated differences of a feyhe target polarization in the = x, y, or z directions, are
percent in the luminosity with different beam polarization.given by

The integrated luminosity was determined from a concurrent

measurement gbp elastic scatteringsee next section). (Yi 10, tY- )~ (Ys g, TY-+q,)

S = .
P-Qm (Yi4q,TY-—q )T (Vi —q, TY-4q,)
3. Monitoring beam and target polarization and the luminosity (14c)

Concurrent with the measurement of pion production, _ ) )
elasticpp scattering is observed by a dedicated set of fouf Nese asymmetries will be needed as a function of some of

detectors that covers the angular region meay=45°. For the kinematic variable§ while integrating over the others.

these angles, thpp scattering spin correlation coefficients Eor instance, if we want to know the asymmetries as a func-

A, andA,, are quite large and well knowd5]. This pro- 1E|0IIn Of fg antfqu, Wg sor: theb?v.eniimtq t::jn; thatedlwde the
vides a sensitive on-line monitor for the produBtg,, Uil range of 3 and oq to obtain the yieldsyy (g, q)

P.Q,. andP,Q, of all three beam polarization com OnentSWhile ignoring the other kinematic variables. If the detector
yy! zz o b P acceptance is 100%, ignoring a kinematic variable is equiva-
and the target polarizatio@ =Q,=Q,=Q,. Note that the

lasti . N7i . lent to integrating over that variable. Corrections due to in-
pp elastic scattering analyzing powers négj,=45° areé  ompjete detector acceptance are discussed in Sec. IV F. The

small, S0 that the ir_1dividua| values ferandQ are not well asymmetriesSp , SQm’ andSP,Qm of Eq. (14) form the basis
determined from this measurement; howe"ef’ these numbeTrésr deducing the observables as described in Secs. IV B and
are not needed for the subsequent analysis. Fronpphe

scattering yield, averaged over azimuth and from the known
cross section, we also deduce the integrated luminosity ac-
cumulated with each of the combinations of beam and target
polarization. The relative luminosities are used to normalize A. Exploring the five-dimensional phase space
the pion production vyields in different spin states to equal
integrated luminosity.

IV. RESULTS

The dependence of each polarization observable on five
kinematic variables contains a wealth of detailed information
about the reaction, but it also presents the difficulty of order-
ing and accessing this information. In the present case we
benefit from the limited number of amplitudes, which per-

From the spin-dependent yields, three different asymmemits us to determine the functional dependence of the ob-
tries can be calculated. The fir§;, is the beam polariza- servables on the anglég, ¢4, 6,, ¢, [Eq.(11)]. Based on
tion asymmetry. It is obtained from the difference in thethis knowledge we now develop a procedure for extracting
yields with positive and negative beam polarization, summegolarization information from the data in a systematic and
over all target polarization directiofs complete way.

D. Asymmetries
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Inspecting Eq(11), we note that the azimuthal functions ACR(0.), A®(6), A®(4,),
P (@q,¢p) that occur are one of the followingy, ¢p, yor e Xz P AP
PptT@qs 20p— ®g, 2¢0q— Pps OF @, — ¢q. Assume that we
evaluate the asymmetries versus one of these funcligns
(k=1,...,6) bysorting the events into bins of constdnt.
This is equivalent to an integral over azimuth with the con- AR(0,), AZ g ), AZfa (g ),

.. .. . yot ”p yO0 p yO p

dition ®,=const, and eliminates one of the two azimuthal
degrees of freedom. The implied integration retains only
terms in Eqs(11) that either contaid, or do not depend on
azimuth at all. To further reduce the remaining terms, we

2¢45— 2¢q—
A0, AZEPT0,),  AZETR(),

2¢,— 20—
ALR(0g),  AZPTE(0y),  AETR(6y),

evaluate observables as a function of one of the polar angles AD(8,), ALPEN(6,),  AZEYTR(6y),
6 (6, or 6,), while integrating over the other one by ignor-
ing it. Thus, for each of the polarization observables listed in Azp( 0y, Azpwq( 0y), Azq(gp). (15)

Eqg. (8), we have the choice of six azimuthal functiahg

and two polar angles. The resulting set of observables that These 25 independent observables are extracted from the

are now functions of a single varlat(kea'gher O or Qq) rep data as follows. First, we sort the events into bins for the
resents completely the effect of polarized collision partners — . .

4 ; selected polar angle= 6, or 6, and azimuth functiod, to
on the angular variables. For now, we ignore the dependenc

on the energy-sharing parametgrand integrate over this Sbtain  the ) asymmetnessp(e,(b.k), SQm(g'(_bk)’ and
quantity as well. The dependence enwill be discussed Sp.,(¢:®i) In Eq.(14). Next, we insert the spin-dependent

separately in Sec. IV E. cross section, Eq4), into the expression for the asymme-
tries. For instance, for the beam asymmgéhy. (14a)]this
B. Ay, As, Ay, Ay, andA,, results in Sp(8,® ) =P,Ao(0,Di) +PyAye(0,Dy). Simi-

larly, Eq. (14b) yields the two reIationsSQj(a,fbk)

oA, , andoyA,, contain only terms that are either azimuth =~ QA0j(0.®y), wherej=x ory. We then use the equiva-
®k(9) to

independent or proportional to abgor cos 2@ whered, is  1€nces in Egs(6) and (7) and the definition oA g
one of five azimuthal dependences. Let us define the pola@btain

ization observabl@\ﬁ’k(eq) [or Aﬁk(ep)] as that part of the

The spin-dependent cross section#\yg, ooAs , 0oA;7,

[o2] .
observabley;; that remains when integrating ov@y [or 6] Sp(0,)=Ay(0)(Py cos®, —Pysin®y),  (16a)
and overey and ¢, with the constraintb,=0. Of course,
we still distinguish contributions with cdg from those with SQX(aaq’k):Aj)ok( 0)Q sin®,, (16b)

cos 2@, since we have knowledge of the fdl, distribu-

tion. In this definition, the particulab, selected is used as a o,

superscript as a reminder thh, is used to isolate the cor- S, (0, P =A5(0)Q cosdy. (16¢)
responding term; it no longer appears in the functional de-

pendence of the observable. As an example, the transverseThe @ distributions of the asymmetries on the left are
beam analyzing power that would be measured when obsemmeasured. Since EQq$l6) constrain the ratio®,/Q and
ing just the pion, in the present notation, wouldAgg(6).  Px/Q, knowing just the product®,Q and P,Q (see Sec.
Using this definition, we end up with the following observ-1Il C 3) is sufficient to extrach (6).

ables: In a similar fashion, the spin correlation observables are
_ _ extracted; note that the observabtgsandA,, have no azi-
As(bq),  As(Op): Adbq):  AAby), muthal dependence, except for the terms contaiding
= ¢,— ¢4 Which will be discussed separately in the next sec-
A;Dg( 0q), Afg( 0q), AZ“( 0q), tion? ’
Sp,o,(0,0) = 1/2A5( ) P,Q+ 1/12A7(0) (PxQ c0s 2D+ P, Q sin 20,) — ALK(m— ) P,Q cosdy, (17a)
Sp.o,(6:P1) = L/2As(8)P,Q+ 12A40) (P,Q sin 2By~ PyQ cos Zby) — A K(m— 6)P,Q sind, (17b)
SP,QZ( 0,dy) =A;I’Zk( 0)(PxQ cos®+P,Qsin®,)+A,(6)P,Q. (17c)
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FIG. 5. The observable&s(6,) andA,/6,) as a function of F F F b,
bombarding energy. The dashed curve is obtained with the coeffi- g,- 0.5 '_+ C C C . $
cients of Table IV inserted into Eqd.1). The solid line is the same > b E T E E 5
but takes into account the real acceptance of the defse®ISec. ¢ o ) Saaril e = ra ¥ ; }
IV F). The current status of the theory is illustrated by the dotted F “ I j F F
line (see Sec. VB). —0s5f - - -
Some of the 25 observables that are determined in this I e e T Ey s e

manner are displayed in Figs. 5-9. Figures 5 and 6 show tht
spin correlation coefficientds(0) andA,A6) as a function
of 0, and 6, , respectively, fqr all four bombarding energies. FIG. 7. A“’q(ﬁq) AS3(6,), andA%(4,) at all four bombarding
Figure 7 shows the analyzing pom;fg(eq) and the two energies. These observables are based on the direction #f;the
spin correlation coefficiens9(6,) andAf9(6,) that would i.e., the relative proton momentum is ignored. The curves are ex-
be measured if only the pion were observed, i.e., if the dplained in the caption of Fig. 5.
rection of the relativgpp momentum is ignored. Similarly,
Fig. 8 shows these observables for the case where the pion

325 350 375 400 direction is ignored. In Fig. 9, some of the remaining pos-

i B B e i T S R sible observables are shown at 375 MeV, the energy with the
- best statistics. The errors shown in these figures are from

cos(—)c|

1.5 Fover =1 E 4 EF it 3
= Bkt 41f AHE it 3 counting statistics only. The solid curve is obtained from Eq.
:tf« "F 1 R 3 qF E (11) with the coefficients in Table 1V, taking into account the
05F 1 F ] E ‘; 4 restricted acceptance of the detector system, while the
o F E F t 1 F - R /3 dashed curve results when a detector with 100% acceptance
E HE iE Nj _:_ ___________ x\ﬂ is assumed. The only significant effect of the restricted ac-
OSSR o 'og e 'Of5' ot ceptance occurs with t_he observa_m%sandAzz_. The QOt-
05 ted curves are theoretical calculations that will be discussed
RS B AR I AR +' later.
0 o 1 E

C. A, and Az

The longitudinal analyzing powek,, and the combina-
tion Az=A,,— A of spin correlation coefficients are pro-
T R T I T T portional to sime or sin24p [Eq. (11)], whereAe=¢,

0.5 60 05 10 05 10 05 —¢q- Thus, these observables are invariant with respect to a

coso rotation around the beam axis, and they vanishAfgr=0
P and 7r, which is the case when the momenta of the three

FIG. 6. The observabless(6,) andA,/6,) as a function of outgoing particles are coplanar. The vanishing of these ob-
bombarding energy. The curves are explained in the caption &fervables in the case of a coplanar final state is a conse-
Fig. 5. quence of parity conservation. In fact, a measuremefyf

|
[
- »
RARRNRHeTTanRy RAL
] -

——

e |y |||||’i:| 11

O rrrr
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o . o _ FIG. 9. Some of the observables not shown in Figs. 5-8, at 375
FIG. 8. Aj5(0p), A2(0p), andAP(6p) at all four bombarding  \Mev bombarding energy. For these observables the directions of

energies. These observables are based on the direction of the rglfs +° andof the relative proton momentum have to be known. The
tive pI’Oton momentum; i.e., th@'o momentum is ignored. The curves are explained in the Caption of F|g 5.

curves are explained in the caption of Fig. 5.

in a two-body final-state reactidithus, in coplanar geom- A ¢- Itis obvious thaRo, A,;, andA, do not contribute in
etry), or in a total cross section, has been used as a tool fS case, since they do not dependign Ignoring for the
study the violation of parity conservatipi6]. moment a possibld\¢ dependence of the spin-averaged

Recently, we have published a first analyjdi] of the ~ Cr0SS section, we obtain, for the asymmetf@wlogous to
longitudinal analyzing poweA., for pp—ppa® in which ~ EAds-(16)and(17)],
we demonstrated that this observable can be quite large if Sp(6,A )= P,AL¢()sin 2A (18a)
noncoplanar final states are involved. Previous measure- PLE2P 2720 @
ments of this observable are scarce: some indication of a
large value ofA,, was found 18]in another pion production SQX(e'AQD):SQy(e'A‘P):O’ (18Db)
reaction,pn—ppm  at 443 MeV, while a measurement of
A, in the reactior?H(p,pp)n at 9 MeV yielded values that So.(0,A¢) = QAL (m— 0)sinA e+ QAL *(m— )sin 2A ¢,
are consistent with zero at the level of 0.008]. z (18c)
In analogy with the previous section, we define the ob-
servablesAyf(6,), A% ¥(0,), andAZ¢(6,) asAy(€) and

= () +Ade
Az(§), integrated ovew,, as well as integrated over azi- SP'QX(Q’A(’D) V2P QLA (0)+AsT()coshe

muth with the conditionA ¢=const and evaluated a@t¢ +A§A“’(0)0052Acp]
= /2. This definition is suggested by E¢&lg) and(11h).
Again, we can distinguishs(8,) from AZ3¢(6,) because —1/2Az%(0)P,QsinA ¢, (18d)
we know the fullA ¢ distribution. Likewise, we define the
Ag parts ofAy andA,, asAS?, AP, AYf andAZ¢, in Sp.o.(0,A¢)=1/2P,Q[As () + A2%(8)cosA
this case evaluated at¢=0 [based on Egs(11c) and Y
(11d)]. +A3*(0)cos A o]
In order to extracA,q and A= from the present data, we Ap _
generate the asymmetriSs, SQJ_, andSp'QJ as a function of +1/2Az%(6)PxQsinAe, (18e)
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TABLE IV. Values at the four bombarding energies of the coefficients introduced in(HEgs.The
derivation of these coefficients is discussed in Sec. IV D. All values have been normalized with the common
factor 872/ oo; . These numbers parametrize all possible initial-state polarization observables of the reaction
everywhere in phase space.

325 MeV 350 MeV 375 MeV 400 MeV

Value Error Value Error Value Error Value Error
E 0.721  0.082 0410 0.08 0221  0.030 0.043  0.053
F! 0.168 0.021  0.265 0.022 0.262 0.007 0.297  0.013
HYO 0.111  0.005 0.325 0.010 0517 0.015 0.660  0.010
H> 0.056 0.059 0.289 0.060 0.369 0.038 0.603  0.048
HZ? 0.055 0.082 0036 008 0.148 0.030 0.057  0.053
H9%+| 0.014 0.082 0041 008 0.063 0.030 0.084  0.053
HO%+Fo+K -0.008 0416 —0.059 0419 -0.118 0.402 —0.170 0.406
HI+ 2l -0.017 0.060 -0.051 0.064 -0.080 0.020 -0.105 0.028
H3 - 2F,+2K -0.078 0.080 -0.167 0.094 -0.215 0.024 -0.248 0.114
HZ—| 0.031 0.056 0.092 0.058 0.143 0.023 0.189 0.045
H3*—F,—K —0.046 0.079 -0.104 0.080 -0.139 0.030 -0.166 0.059
G -0.096 0.010 -0.223 0.022 -0.296 0.030 -—0.344 0.034
eh -0.158 0.016 —0.365 0.037 —0.486 0.049 -0.564 0.056
HZO 0.019 0.002 0.057 0.006 0.089 0.009 0.117 0.012
HZ —0.054  0.052 0.020 0.047 —0.041  0.020 0.000 0.032
HY° -0.013 0.006 —0.038 0.018 -—0.060 0.029 -0.079 0.038
H2O —0.056 0.006 -0.165 0.018 -0.257 0.029 -0.325 0.038
H3 -0.038 0.019 -0.122 0.055 -0.175 0.086 —0.231 0.114
H -0.133 0.019 -0.389 0055 -0.607 0.086 —0.688  0.090
HZ%? 0.025 0.019 0.074 0.055 0.115 0.080 0.152 0.114
HZ? 0.074 0.019 0.217 0.055 0.339 0.080 0.363 0.114
GY° -0.079 0.016 -0.196 0.016 —0.223 0.005 -0.291  0.009
GY° 0.009 0.020 -0.023 0.022 0.026 0.007 0.048 0.011
GY° -0.018 0.038 -0.149 0.038 -0.298 0.013 -0.347 0.021
GY° 0.018 0.024 0.037 0.024 0.031 0.008 0.030 0.014
G}? 0.223 0.058 0.396 0.056 0.473 0.022 0.574 0.040
G¥* 0.058 0.083 —0.043  0.083 0.024 0.029 0.040 0.054
G¥? 0.146 0.140 0.017 0.136 0.245 0.051 0.195 0.093
GX* 0.045 0.086 —0.031 0.086 0.035 0.032 0.085 0.059
HYO+ 0 0.030 0.019 0.016 0.019 0.000 0.006 —0.029  0.011
HY°+ KYO —-0.051 0.019 -0.045 0.019 -0.049 0.006 -0.061 0.011
HY° 0.006 0.019 -0.019 0.019 0.018 0.006 0.028 0.011
HY° -0.011  0.029 0.039 0.029 0.021 0.010 0.024 0.016
HY° —-0.016  0.029 0.121 0.029 0.071 0.010 0.062 0.016
HY24 1% 0.064 0.068 0.027 0.068 0.203 0.025 0.216 0.047
HXZ+ K*? —-0.123 0.068 —0.193 0.068 —0.188 0.025 -0.316 0.047
H? -0.101 0.070 -—0.086 0.068 0.051 0.028 —0.053  0.049
H¥? 0.016 0.102 -0.259 0.102 -0.315 0.038 -0.391 0.070
HE? 0.027 0.102 0.157 0.102 0.153 0.038 0.208 0.070
Ha 0.135  0.081 0.194 0.099 0.374 0.027 0.379 0.039
H2 -0.069 0.120 -0.020 0.141 -—0.008 0.036 0.072 0.054
HS 0.071  0.081 0.339 0.099 0.441 0.027 0.567 0.039
HS 0.137  0.081 0.429 0.102 0.536 0.027 0.567 0.027
HE -0.030 0.135 0.093 0.158 0.106 0.045 0.198 0.068
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FIG. 10. The asymmetries versisp=¢,— ¢, at 375 MeV
bombarding energy. Integrated over both polar angles, the curvese

Ad

represent a fit to thA ¢ distribution according to Eq18).

Spo,(0,8¢)=P,Q[A,60)+Asf(6)cosA

These asymmetries, integrated over polar angle, are shown i
Fig. 10. HereSp andSQZ reflect the beam and target analyz-
ing powersA,o andAg,, which are related by Eq7). The
quantitiesS, and SQy are consistent with zero, as expected.
Evaluating the asymmetries as a functiorgpf(thus, in-
tegrating overd,), we extract theg, distributions of the

+AZ2¢(h)cos A¢].

(18f)

observables by fitting with the respective functiona ef In

this way we obtain the observables

A(6y), A6y (Ap=ml2), (19)
AS4(6y), ASE(6y) (Ae=0),
AZe(0,), AZ9(6,) (Ae=0).

The part ofA,, that scales with sin 2A[see Eq(11g)]was
found to be consistent with zero. It is clear from EG4g)

MeV.

D. Parametrization of the data

The expansion into functions of the anglgs ¢q, 0,
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FIG. 11. Polar anglé, dependence of the observables that de-
pend onA ¢=¢,— ¢4, as discussed in Sec. IV C, at the two bom-
barding energies with the best statistics. The curves are explained in

the caption of Fig. 5.

ables at any point in phase space, provided the expansion

coefficientsg, F, G, . ..

are known. These coefficients thus

represent a parametrization of all our measurements and con-
stitute the central result of this experiment. The values for
the coefficients, normalized by a common factar@r,,

are listed in Table IV. Note that the common factor cancels
when calculating a polarization observalg by dividing
and(11h) that thed, dependence does not contain indepenthe spin-dependent cross sectiggA;; by the spin-averaged
dent information. Thus, from th®e-dependent asymmetries cross sectiomr.
we extract six additional observables. They are shown in Fig. The task of determining the values of the coefficients of
11 for the measurements with better statistics at 375 and 4@@s. (11) is simplified by the fact that a given polarization
observable from the list in Eq§l5) and (19) depends on
only a few coefficients. For instance, the observA@& 0q)
depends orGY°, (H{°+1%°), and H3*+1), and AJ4(6,)
depends onG¥°, G¥°, and H+F,+K). However the

¢p [Eg. (11)] allows one to calculate all polarization observ-quality of the data, especially at the lower two energies, is

064002-13



H. O. MEYERet al. PHYSICAL REVIEW C63 064002

TABLE V. Total cross sections versus bombarding energy. The second column lists the spin-averaged
total cross section assumed in this paper. The next two columns show the result of this experiment for the
spin-dependendent total cross sections. These values have been corrected for incomplete detector acceptance
by the amount listed in the last two colun{ese Sec. IV F).

T Tiot( M) Aotlo Ao oo Corrections

(MeV) (ub) Aot/ (Ao lo1or)
325 7.7 —1.162+0.063 1.668+0.116 —0.106 0.026
350 17 —0.579+0.068 1.278+0.114 —0.095 0.026
375 40 —0.287+0.018 0.671+0.046 —0.059 0.021
400 86 —0.096+0.030 0.565+0.088 —0.020 —0.001

not sufficient to fit the coefficients to the data without anythen fit to the angular distributionfs (6,), Aé‘”(eq),
constraining assumptions. In the following, we describeaZ*¢(6,), A,(6,), A3F(8,), AZ¢(0y), Ax’(6y), and
these assumptions and a step-by-step procedure to determkés"(aq) at all four energies simultaneously. The fit is shown
the coefficients of Eq.11). as a solid line in Fig. 11; the? per degree of freedom is 1.6.

In the first step, we address the coefficidfit§, H8°, With the angular dependence of the spin-averaged cross
H3, andHZ%. The corresponding terms in E@.1) do not  section now known, the remaining coefficients are deter-
depend on angle but represent different final stafsy,( mined by fitting the corresponding observables without any
(Ps?, and @p)? (see Table Il). The relative weight of the constraint on their energy dependence. The errors are ob-
(Ps)? final state follows from the spin-dependent total crosérﬁg‘ri‘g by propagating the statistical errors of the measure-
section[Eq. (13)], but the relative contributions of th8y : .
and Pp)? final states can only be distinguished because theé/ Note that the observabl¢&gs. (15) and (19)] are inte-
depend on energy differently. This is explained in more rated over eithep, or 6, and thus do not constrain the

T 00 4> zz 1y X0 Xz
detall in Sec. IV E. Using that result, we set the coefficien’t:oeff'c'entSH3 H3,H3"H .,.andl-'|2 :
00 . o The values of the coefficients in Table IV have been ob-
Hg equal too(Pp)/oywy, the relative contribution of the

' . , tained from the data by taking into account the incomplete
(Pp)” final state. Having fixed chZGD(:))Z strength, the coef-  5cceptance of the detecttior more detail, see Sec. IV F).
ficientsE, F1, Ho', Hg, andHg” follow from Egs.(12),  The resulting parametrization of the data is shown as a solid
with the values of the spin-dependent total cross sectionge in Figs. 5-9. Using the same coefficients, but pretending
Aorlow and Aoy /o, which have been deduced from that the detector accepts all of phase space, leads to the

the total, spin-dependent yields as listed in Table V. dashed line. This illustrates the smallness of the effect of
Next, we turn to the coefficients that multiply the termsincomplete detector acceptance.
with (3 cog6—1) in oy, oAy, and opA,, [Egs. (11a), We note that the coefficientsandK that represent inter-

(11c), (11d)]. Those coefficients ate?°, Hy, HZZ, HY°,  fering SsSdandSsDsamplitudes always occur in a sum with

22 andF,, two of which can be eliminated by Ed2d). anH} coefficient. These sums become a single parameter in
The SsSdand SsDsinterference terms| and K may be the analysis. Thus, the present analysis provides no informa-
lumped with the correspondirtg) terms with Eq(12d)still  tion on the importance of these terms.
satisfied. Since calculating the observabieg;; /o in- Equatlons(ll) contain a total of 49 coefficients. Of these,
volves a ratio of similar functions, the statistical accuracy ofve determine 44 from the dafgee Table 1V). Among these,
the present data is insufficient to determine these coefficienfdere are six known relatiof&gs.(12a),(12d)], resulting in
separately for each bombarding energy. Instead, we impoS& numbers determined. On the other hand, the coefficients

an energy dependence on the coefficients by settjhay) i”‘re (known) {u.rl;ctti.ons fOf rtr?;?j an&pEI)itudesl_ltiséed i:\hTabIe I
— — ) noring contributions fronsd and Ds amplitudes, there are
—HY - ¥ 010(7) andFy(m)=F(n)- 7 onoe(7). The jus- Do y

o K . R ! ; 2 amplitudes. Since there is no interference between ampli-

tification for this assumption is given in the next section, ang ¢ withs;= 0 ands; = 1, there are two free phases, and, in

t_Paebl\éal\l/Je_sl_hfS:T‘s\;é”%t ?i(/ee tcgrsie?bllieg Itr;\eRZElt]I:rngisTribu-prindple 22 real numbers should be sufficient to completely

tions A (9 ) A (6.), A(6,), andA,(6.) at agfl four en describe the data. Thus, the parametrization presented here
S\VUq/s A3\ Up)s MzAUq)s z2\Yp -

. ) 0 .-~ [EQ.(11) and Table IV]has some redundancy; i.e., there are
ergies simultaneously. The fit is shown as a solid line in Fig$,|ations between the parametfirsaddition to those in Eq.
5 and 6; they? per degree of freedom is 1.5.

) . 00 s 47 (12)]. These relations will be revealed in the course of the
Next, we determine the coefficienks’, Hi, Hi” (K amplitude analysis which is planned for the future.
=4,5), H?®, G®, andGF= that appear with terms that con-

tain A_go. Again, Eq.(12d) constrain_s theHLj . _The corre- E. Energy dependence
sponding observables have been discussed in Sec. IV C. We o _ _ _
again impose a bombarding energy dependence ¢ the 1. Definitions and kinematics relation

efficients as described in the preceding paragraph and seta complete description of the final-state kinematics, apart
G'l(5)=G" 5'low(n). The remaining seven variables arefrom the four angleg,, ¢,, 04, ¢4, Must include an en-
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ergy variable that specifies the sharing of the available ki- When integrating over the energy-sharing parameter

netic energy between the pion and e pair. There is only
one such variable since the total energy of the sysfenis
determined by the bombarding energy. For instancg,isf

one obtains, via the upper limidt,,,, a dependence on bom-
barding energy, o). Thus, close to threshold, where only
the Sswave contributes, the shape of totap— pp=° cross

the magnitude of the pion center-of-mass momentum, thgectionasa function of bombarding energy should be deter-

proton momentum in thBIN rest system is given by

1
p= 2 \/512_4m|ZJQQmax\/ 1- (q/qmax)zr

wheres;,=s—2/s(q*+ mw)+me is the square of the en-
ergy of theNN subsystem. The second part of E2) is the

(20)

corresponding nonrelativistic expression, which is a good a

proximation near threshold. Hei®g,.«[EQ. (1)]is the largest

possible pion momentum, which is realized when the tw

protons are at rest relative to each other Q). In the fol-

lowing, we use as the energy-sharing variable, the kineti

energye in the NN subsystem given by

€= Slz_zmp, (21)
which ranges frome=0 (when q=0ma) 0 €ma=\S
—2m,—m,_ (wheng=0). The value foky, is determined
by the bombarding energy, ar[Eqg. (2)], as listed in Table
[l for the energies of this experiment. Using E(X0) and
(21), p andg may be expressed in terms ef

2. Leading contributions to the energy dependence

For a limited energy range, tldynamicsof pion produc-

(0]

mined by the phasespaceand FSI, an expectationthat is
borne out by the dat&]. However, in order to reproduce the
measured proton angular distributionsehas touseavalue
—1.5fm for the scattering lengttseeRef.[5]). This is sig-
nificantly larger than the accepted,Coulomb-uncorrected
value for the pp scattering lengttof a,,= —7.82+0.01fm
[22]. This indicatesclearly that factorizing the FSI of the
rotons and neglecting all other distortions in the initial and
inal statesis only an approximation(for moreon this topic,
see Ref[23]). o
In Eq.(11), the partial-wave coefficiens, F,, G/, H} ,
I, andK may be integratedver e. This integration isnde-
ﬁendent of the angular variables since#anges from 0 to
€may fOr any choice of angles.

To reveal the explicit energy dependence of these coeffi-
cients, we separate off the probability (¢) with which a
given e occurs wherel denotes the set of four final-state
angular momentd,,, |4, I, andl, that occur in the bilin-
ear sums of amplitudes,

w (e)de=¢ q(e)tt!atla p(e)*etp fL(€) de,
(22)

where the normalizatiog ensures thafw, (e)de=1. The
final-state factor igiven byf, () =f(e) if bothl, andlr’, are

tion is often considered energy independent. The strong e#ero, by f, (e)=f(e) if either I, or I is zero, and by

ergy dependence of thebservablesear threshold is then

f (e)=1 in all other cases. The dependence for partial

due to a number of known factors, as discussed in the fowaves with various angular momenta is given in Table II.

lowing.

The three functionswvg(e), wg(e), and wy(e) represent

The first energy dependence is due to the phase spad®sy, (Psf, and Pp)? partial waves. For a bombarding

volumedp(€). Nonrelativistically the phase space volume isenergy of 375 MeV, these three functions are displayed as
proportional toq(e)p(e)de. The second energy-dependentsolid curves in Fig. 12. Note thatz(€) clearly shows an
factor arises from the radial wave functions for the pion anénhancement for sma#, caused by the final-state interac-
the NN pair. Close to threshold, the momentandp, and tion. In general, the weight functiong_(e) depend on the
thus the arguments of these wave functions, are small, agétector acceptance, since in the laboratory the momenta of
one can use their limiting form to obtain the facybmp's,  the two protons do depend enThis is illustrated in Fig. 12
wherel, andl , are the respective angular momenta. It is thidy Monte Carlo—generated histograms that show the effect
factor that makes it possible to use the energy dependenceadfa 5° central hole in the detector coverage. The conse-
the reaction to make statements about partial-wave contribguences of incomplete detector acceptance are discussed fur-

tions, but one must keep in mind that the simple power law ither in Sec. IV F.

an approximation, strictly true only far—0 or q—0.

As briefly noted, the dependence of the amplitudeg on

The third energy-dependent factor arises from distortioimplies a dependence on bombarding energyy,dsecause
in the entrance and exit channel. By far the strongest enerdlye upper limite. Of the integration ovee depends om.

dependence is due to the final-state intera¢#&1) between
two nucleons in a relativg state. Watson showd@0] that

In the absence of FSls, and with the nonrelativistic expres-
sion for the phase volume and fofe) [Eg. (20)], the inte-

the FSI energy dependence of the cross section can be segetion of Eq.(22) is analytic and a simple power law re-

rated as a factdi(e) that follows from theNN phase shifts
at energye. One method to calculafée) is by representing

sults. From this, we expect the partial-wave coefficiénhts
G, andH to be proportional t@% aoi( %), 7'/ 7), and

the S-wave phase shift by an effective-range expansion;®/a.(7), respectively. Such a simple dependence on bom-
Since the two nucleons carry charge, Coulomb repulsion hdmrding energy is not expected for the coefficiénts and

to be incorporated into the effective-range expan&arn. In

K, since these are affected by the FSI.

the present work, this procedure is adopted for calculations

that involve FSls. Other authors have used a fit to a pheno

enological representation of tHeN interaction to obtain
f(e) [10].

e Dependence of A and A,, on the energy-sharing parameter

Some of the coefficients in Eq11l) cannot be distin-
guished from each other based on the angular distributions.
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g10 3 FIG. 13. Dependence éfs andA,,, integrated over both polar
® 5E angles, on the energy-sharing parameter,.,. The solid lines
o bl N represent a three-parameter fit to the data at all four energies simul-
0 02 04 06 0.8 1 taneously; see Sec. IVE 3.
ef epax

. , energy-sharing parameter The result is shown in Fig. 13

o FIG. 12. The pmbab"'?’vdfl). af a function of the energy- o o our bombarding energies. The solid curves are ob-
sharing parameter/ emgy. The solid ine corresponds to H@2), tained from Eq(23) with weight functionsy, that take into
while the Monte Carlo—generated histograms show the effect of thgccount the acceptance of the detector. The coefficients in
central hole in the detector stack. )

Eqg. (23) were forced to depend on bombarding energy as

However, their individual values can still be assessed, usingi(7) =F17% o),  HY(n) =He 7% oo n),  and

the fact that they depend differently on the energy parametef%(n)=ﬁ§p8/awt( 7). At T=325 MeV an accurate value

e. In this section, we explain how this can be done. for the total cross section existe§;=7.70+0.26ub [5]).
When we integrate the spin-dependent cross sections Blowever, at higher energies, data are few and of poor qual-

Eqg. (11) over all angles, onlyoy(€), oo(€)As(€), and ity. For the present purpose we use &gg(7») a smooth

oo(€)A,{€) remain which in turn depend on four coeffi- approximation to the world’s daf@ee Ref[11] and Table

cientsE, F,, HY, H3, andHZ?, whereHZ*=HY-H3. V) Assuming that there are no other partial waves, we have

Note that these coefficients when normalized b%/8,;are  E=1—F,—H3°. Therefore, only three energy-independent

related to the partial-wave total cross sectiotfk,,lq) by  parameters are adjusted. Theof the best fit per degree of

0 (SS)lrioi=E, o(Ps)lo=F;, and o(Pp)/ow=H. freedom is 1.8, which leads us to suspect that the limitations

The present notation is related to that used in Rdffby  of the simple energy dependence adopted here may be no-

20(Pp)/ow;=H3 . The two observabless(€) andA,(e)  ficeable, especially at the higher energies. The resulting

in terms of the partial-wave coefficients are now given by Partial-wave contributions to the total cross section are
shown in Fig. 14. The error bars are obtained by repeating

_2[E~WE(e)—Fl-WF(e)]+H§~WH(e) the fit by varying the values assumed &qg; or by using

T E We(e) + Frewe(e)+ Ha-wy(e) e
(23a) ollly) | . S8
Ot 08|
A —E-we(e)—F1-We() + (HR— Hg) - wy(e) -
oA E-We(e)+Fy-We(e)+Hg-wy(e) o8 -
(23b) i
04
In these equations, the probabilitieg, wg, andwy are C
known functions ofe that differ from each othefsee Fig. 02
12). Thus, it is possible to determine the coeffici&nts ,, i
HS, andH3 from a fit to the measuredly(e) andA,(€). Y TS »—-04’.3 YT -"‘?-~1

These coefficients are not accessible separately by a study of - m

the angular distributions. A similar method has been applied M = Ga/ M

previously[10] to the spin-averaged total cross section as & fiG. 14. Contribution of the three possible final-state angular

function of e. momenta to the total cross section. The dashed and solid lines rep-
From the set of good events we determige) and  resent the expectesf (5?) dependence of thes (Pp) partial-wave

A, [€) following the same procedure as described in Seross section, while the dotted line indicates the remainder, which

IV B, except that the argumenit, (or 6,,) is replaced by the represents th&spartial-wave cross section.
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tude. The observation that teeandH coefficients obey the

z 2 "
Ey G° ¢ F HE+K© . power law that is expected from the “trivial” energy-
gs_ "g i ’ dependent factors confirms a similar finding based on partial-
¢ 10E "{: 10E wave contributions to the spin-dependent total cross sections
L of [11].
1F E.:, 1
: F. Systematic uncertainties and corrections
0-104 0'5 0'6 0'7 0'8 0'9 y 0-104 0'5 0'6 0'7 0'8 0'9 y 1. Corrections for a nonideal detector
For a number of reasons, the apparatus does not registers
all the generategd p— ppm° events. The main loss of events
g g "% N occurs because the detector system has a hole in the center to
2 £ FH allow for the 3-cm-diam beam pipe just downstream of the
ook T 10 target. Seen from the center of the target, this hole subtends
T E

a cone with about 5° opening angle. Between 288325
MeV) and 10%(at 400 MeV)of all events have at least one
proton that falls into this cone. At 400 MeV a few percent of
the events miss the detector on the outside, and about 3%
S o contain a proton that is energetic enough to fire the veto
04 05 06 07 0809 1 05 06 07 0809 1 detector. In about 2% of the events, both protons strike the
n yl same segment of the E detector, and therefore do not trigger
the detector. The efficiency of an individual wire chamber
Elane is between 93% and 95%, but since only three planes
1ave to respond for a valid event, only about 8% of all events
are lost because of this. All of these effects combined
amount to a loss of events between 30% and 22% for the
energies from 325 MeV to 400 MeV. A Monte Carlo simu-
weight functionsw,_ calculated directly from Eq(22), as |ation of the detailed detector performance was used to de-
would be appropriate for a detector with 100% acceptancgermine these numbers. Reactions in the scintillators might
The dashed line in Fig. 14 represents the expegtatbpen-  lower the proton energy measured by the K and E scintilla-
dence of thePs partial cross sectiony(Ps)=F;, and the tors, leading to a tail of ther® peak in the missing-mass
solid line corresponds to the imposed dependence of spectrum(Fig. 4), placing some good events outside the ac-
o(Pp)=HY’, while the dotted line indicates the remainder,cepted mass range. However, there is no evidence for a sig-
given byE=1—F;—HJ°, which represents th8spartial-  nificant tail in the mass spectrum.
wave cross section. The correction of the data presented in this paper for the
losses discussed above turns out to be small. This is because
polarization observables are a ratio of yields measured with
and without polarization. If the fraction of lost events is the
As pointed out at the end of Sec. IV E 1, based on theame in both cases, there is no net correction. For this reason,
phase space, angular momentum dependence of the watere is no correction for the data in a given volume element
functions, and FSI, we expect that the partial-wave coeffidequde of the five-dimensional phase space. Thus, cor-
cientsF, G, andH times the total cross sectien,(») are  rections arise only when integrating over some region of the
proportional tor®, »’, and »® respectively. We have also phase space.
explained that the integration overis independent of the Acceptance corrections are estimated as follows. Let us
angular variables. Thus, each of the coefficients in(EL).  denote bya (&) the detector acceptance at a given péint
that does not containMN Sstate £, G, andH coefficients)  phase space. Since the corresponding event is either seen or
is expected to obey such a power law. In order to test thisot seen,a(¢) has a value of 1 or 0. In five-dimensional
expectation, we have to multiply the values for the coeffiphase space the transition fram:0 to =1 occurs at well-
cients in Table IV by the total cross sectiop(7) at the defined boundaries. However, when one integrates over sev-
corresponding energy. Fot,(7) we use a smooth approxi- eral variables, the dependenceaobn the remaining vari-
mation to the world’s data, as explained in the previous seébles is smoothed out, and this is another reason for the
tion. The resultingy dependence of some of the coefficientssmallness of the acceptance corrections. Since the functional
in Table IV that have been obtained without constrainingiependence of the observables on all five variafjjesp,,
their energy dependence is shown in Fig. 15. The two Iinegp, @p, ande is known, we can carry out the integration
shown in the figure correspond to the best fit withyiror  over kinematic variables, weighting the integrand wi(f%)
n® dependence. As can be seen, the simple powerdaw and thus taking into account the real detector acceptance.
dependence of the coefficients is at least qualitatively cofFhese integrals are evaluated numerically using the Monte
rect. This is also true for the coefficiet’{+K/2), which  Carlo method for each of the partial waves in Table Il and
could in principle contain a contribution fromBs ampli-  for each of the trigonometric functions of the kinematic vari-

0.1 0.1

o
kY

FIG. 15. Dependence of some of the coefficients of Eds.
and Table IV on the bombarding energy. The two lines are propo
tional to 5’ (solid) (expected for theG coefficients)and #°
(dashed) éxpected for thél coefficients).

4. Dependence of observables on bombarding energy
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ables. For comparison, setting=1, independent f, yields V. COMPARISON WITH THEORY
the result for a detector with 100% acceptance. The effect of
incomplete acceptance on the angular distributions is illus-
trated in Figs. 5-9. The solid curve is obtained from Egs. The advent of new data due to the three technical ad-
(11) and the coefficients in Table IV using the true detecto¥ances mentioned in Sec. | was answered by theoretical de-
acceptance, while the dashed line results when 100% detétglopments. The first measurements triggered a study of
tor acceptance is assumed. As can be seen the effects @H&ntum number selection rules, of the role of the final-state
very small. interaction, and of nucleon excited states, and led to a theory
The acceptance corrections for the total cross section8f pion production in analogy with quantum electrodynam-
Eq.(12), involve the integrals over the entire phase space f¢gs. The availability of kinematically complete cross section
three partial waves with the final stat®s, PsandPp, cor- data led to the application of effective chiral Lagrangians, of
responding tcE, F,, andH in Eq. (12). Again, if the frac- soft pion techniques, and models with coupled channels, and
tional loss for all three partial waves were the same, therde recent precise cross section data close to threshold ob-
would be no correction. However, as can be seen from Figained at storage rings stimulated the construction of meson
12, theSspartial wave is affected more strongly by losses inexchange models, and a study of the short-range part of the
the central hole than the other two partial waves. In order tRN interaction as well as the role of chiral symmetry in the
evaluate the correction fdvor/ oo andAo /oy the rela-  interpretation of pion production. A review of the develope-
tive strength of the three partial waves is taken as shown ifent of the theory offNN systems, prior to 1990 is given in
Fig. 14. The resulting corrections are listed in Table V. Theygef, [24].
are slightly different than those used in F{gﬁ] because We now recognize the fact that the reactigm— pps°
more has since been learned about the relative importance f . threshold is sensitive to short-range exchange mecha-

A. Current status of the theory of NN—NN

the three contributing partial waves. nisms in the two-nucleon system, because the main pion ex-
change term is prohibited by isospin conservation. Soon after
2. Other systematic effects the first accurate total cross section measurement with an

The dead time of the data acquisition system was megjectron—cooled b.ea'fE]’ It was reallzec[2_5,26]that pion -
g{oductlon on a single nucleon underestimates the empirical

sured for each of the different spin states of beam and targ Foss section by about a factor of 5. Lee and Riska proposed

The dead time is a few percent and dlfferences between SF{}%] that this shortfall of the theoretical cross section might
states are less than 10 Thus, dead time effects can be . S . .
be explained by the omission of pair diagrams with an ex-

neglected. changed heavy mesom(w). This was confirmed quantita-

The reconstruction of the pion polar anglg depends . ) .
sensitively on the absolute energy calibration of the E and Rvely [28]. Subsequently, the role of re5|d_ual, virtual pion
exchange was found to be not necessarily sfiiz8l|30].

scintillators, since the pion has to account for the remaininplowever at this time the role of pion rescattering is stil

momentum. However, because of the identity of the collision ; . . ) )
ontroversial, especially since field theoretical models and

partners, the spin-averaged cross section has to be symme{:r C ; . .
aroundd,=90°. This condition has been used as one of tht(a:hlral perturbation theory31,32]disagree on the sign of the

O - N . .. pion exchange amplitude. On the other hand, the importance
criteria in determining the energy calibration of the scintilla-
tors of heavy-meason exchange also has been questj@3éd
. . Additional short-range mechanisms have been studied as
Finally, one has to worry about the resolution of the de- ) . ” . .
well, including transition couplings between different ex-
tector system as a whole for the cms anglesp, ,6,, and

¢q- This has been studied with a Monte Carlo simulation Oﬁhanged mesonk34] and the role of the(1232) isobar

the response of the detector system. The generated eve §,32,30jand theSy; andD 5 nucleon resonanc¢ss]. An

b Y i 9 inferpretation of the reaction on the basis of approximately
were processed by the same code that was used to anal Zo%served chiral symmetr@6,37,31,32]has, so far, not
the data. For all four angles, the difference between the "Been able to reproduce the cross section close to threshold.

constructed angle and the "true” anglas chosen initially Fully relativistic calculations have been carried out in a co-

by_the_ Monte Carlo smulapt)nfalls Into a dlstrlbufuo_n variant one-boson exchange model with parameters fitted to
which is very nearly a Gaussian, centered on zero within tht%e amplitudes of elastiiN scattering38,39]
widths of the distributions. We identify the angular resolu- e
tion with the o of this Gaussian in each case. These distri-

butions vary somewhat with beam energy and are widest for
the lowest-energy data. Therefore, we here reporirtioé The impressive theoretical effort during the past decade

the Gaussian fit to each distribution at 325 MeV beam erthat is summarized in the preceding section has been mostly
ergy. The results are=3.0° for 6,, 1.5° for¢,, 8.0° for  devoted to a study of the lowest partial wave. Since, as we
0y, and 6.0° for¢,. The o corresponding to the cag  have seen, the energy dependence of that partial wave is well
distribution of errors is 0.04, and for cég(it is 0.12. There described by “trivial” factors, this means that, so far, only

is no correlation observed between the errors in the recoits strength, i.e., a single experimental number, has been con-
structedp andq vectors. Clearly, this resolution is sufficient fronted with theory. Some of the models mentioned in the

to resolve the harmonic content of the angular distributionpreceding section naturally include higher partial waves and

in this experiment. thus would be able to predict polarization observables. How-

B. Theory and polarization observables
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ever, at this time, such calculations have only been carriedividual amplitudes that follow from the present measure-

out by groups at Osakd0]and at Jlich [30,41,42]. ment. Such an amplitude analysis is currently in progress.
Pion production in the lish model[43] includes direct
production,s- andp-wave pion rescattering, an intermediate ACKNOWLEDGMENTS

A(1232)nucleon excited state, and a contribution from pair _ ) )
diagrams. The latter carries an adjustable parameter; it is 1hiS work has been supported by the U.S. National Sci-

taken to represent those short-range mechanisms that are RBf€ Foundation under Grant Nos. PHY-9602872, PHY-
explicitly included in the model. Final-state angular mo-2722554, PHY-9722556, and PHY-9901529, and by the U.S.
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- o . . the observables presented here. We also would like to thank

is little similarity between theoretical estimates and the dat

We hope that the theoretical community views this disagre ur colleagues M. Dzemujzm, F. Sperisen, M. Wolanski, an_d
®R. Flammang who participated in the early phases of this
ment as a challenge. experiment.
Finally, we point out that the experimental information
now available offers the possibility to discuss individual re-
action amplitudes, and that a comparison with theory should
take place on this level. Such a study is currently in progress. 1. Expansion of the reaction amplitude

APPENDIX: PARTIAL-WAVE FORMALISM

We present here the details of the partial-wave formalism
which was employed to determine the form of the angular
distributions of the cross section and polarization observ-
ﬁg:)les, Eqgs(11). The main difficulty for reactions such as
rrl)—>pp7r° is to understand how a partial-wave expansion

VI. SUMMARY AND CONCLUSIONS

We have studied the reactigp— pp=®, kinematically
complete, with a polarized beam and a polarized target. T
experiment relies on the advantages offered by the use of B b ied out for situati in which the final state h
internal target in a storage ring. The experiment has beei h be carned out for situations in which the final state has

. . . ree particles.
carried out at four bombarding energies between 325 an . .
400 MeV. In this energy range tlsspartial wave ceases to We work in the c.m. frame and adppt coordinatandp
) conjugate to the momengaandq of Fig. 2. The symboW

be dc'):r_mnizt, and higher partial waves become Importar}%presents the full wave function of the system that evolves
(seeh '9. h )- h . h ber of _from thepp initial state, and we wish to focus on the com-

, ,T roug O_Ut the p'resent Energy region, the number o S'Qb'onents ofl which correspond to some three-body channel
nificant partial amplitudes is still smdtt most 12). Under B. We know from Ref[44] that for reactions leading to

these conditions, it is feasible to expand the observables infﬁree-body final states, the outgoing wave in the asymptotic
a complete set of angular functions. The expansion coeffiagion is of the form

cients are determined from the data. This results in a param-

etrization of the findings of this experiment and allows one eléRp
to calculate any analyzing power or correlation coefficient ‘I'B(F,P)Hﬁfﬁ(p,q;ki), (A1)
for any configuration of the three-body final state. We in- B

cIude_ as an appendix the necessary framewqu o qlscugv?]ereki is the initial momentum. The quantitigsand R,
polarization observables in a reaction with polarized spin-1/

collision partners and a three-body final state. are given by
From a formal partial-wave analysis we learn that the am-
plitudes can be arranged into the two gro(§sSd, Ds) and £=2\p1pBylt?
(Ps,Pp), and only amplitudes within one group can interfere
with each other. We also see that in the coefficients of thdd
angular distributions, terms that represent the interference ) ) 5
between(SsSd)and (SsDs)amplitudes, always occur in a Ri= (el “+ u2p?) N papa, (A3)
sum with a term that contains orBp waves. These sums
then become a single parameter in the analysis. Thus théhereu; andu, are the reduced masses associated with the
contribution fromSd and Ds partial waves cannot be de- coordinates andp, andE is the available kinetic energy in
duced from the angular distribution and must rely on a studihe final state.
of the energy dependence. However, we find no evidence If the particles have spin, we may construct a wave func-
that terms that contai®d and Ds partial waves depart in tion with spin projectionsr, and o, for the two particles in
their energy dependence from what is expected for the corthe initial state, and the full wave functioh that evolves
peting Pp wave alone. from this initial state will contain outgoing waves with vari-
The formalism presented in this paper shows that it isus final-state spin projections;, o,, and o. It follows
possible to calculate the observables from the partial-wavidat the reaction amplitudég must carry all five spin labels.
amplitudes directly. Embedding this calculation into a fittinglsospin projection quantum numbers may be incorporated in
procedure would allow one to discuss the constraints on ir& similar way.

(A2)
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Formal expressions for the reaction amplitudes can be obrhere)), is the angular momentum/isospin function:
tained by employing a three-body Green’s funcfidf] in
conjunction with a Lippmann-Schwinger-like equati@ee
Ref. [44]). The result for the asymptotic wave function in = yM.7— % (g 5 5 5 |50:)(si0;,IN|IM)

channelg is 04,0 .0
N, Tq,Tp
2 \126i6Rs E R
i| =) = 2 X(taTa, ot YN X228 X2 972 5P A9
\Ifﬁ(r,p)—u(wg R%’Z (zwh2)2<¢,//f|vﬁ|‘lf>, (A4) (taa to |t Y () X2 X, 72 7y (A9)
whereV is some kind of interaction potential and One can easily argue that the full wave functibrmust
ikt iap have the same basic angular momentum structuye .a$o
Yi=€""dVPh1hr3. (AS)  see this we write the Bessel functigrin terms of spherical

Hankel functions so that; becomes a sum of ingoing and
outgoing spherical waves, each having well-defined quantum
I[]1umbers. For example, the ingoing wave in a given angular
momentum channel will have the asymptotic form

In this last formula thep;’s are the internal wave functions
of the particles in the final state. Fpp—pp=® these are
just spin and isospin wave functions. The matrix element i
Eq. (A4) implies integration over all coordinates of the prob-
lem, and the actual dependencelof onr and p is con-
tained in thee'*R/R%? factor. The formula for the reaction (i) 1
amplitude can simply be read off from Ed@\4) with the v H_(Zik-r-
help of Eq.(A1). v
To obtain a partial-wave expansion fof we need to ex-
pand both¥ and the outgoing plane waves in terms of an\We then assume that whatever interactions are present con-

gular momentum eigenfunctions. One begins by dividihg serve total angular momentum and total isospin. These inter-

) e i(kiri=1m2) YM.r, (A10)

into two parts, actions affect the outgoing waves but do not alter the ingoing
wave, and so it follows that the full wave function will be of
=i+, (A6)  the form

where ¢; is the unscattered incident plane wave dnds
everything else. Fog; we write

=Xt xp? n2 g ek, (A7)

where they’s and »’s are spin and isospin wave functions,
respectively.

For the angular momentum expansion we choose basighere " is the wave function that evolves frogf™.
states that are simultaneous eigenfunctions of the initial tot@although the exact form o>, may not be known, by our
spins;, orbital angular momentury total angular momen- assumptions it must be an eigenfunctionJoM, t, and .

tum J, and total isospint, with the coupling orders The formula in Eq(A11) is our working equation for the
[(Sa,Sp)si,| ]J and t,,tp)t. We use the symbol to denote  expansion of¥.

V=47, y }\Z (8207, SpTb| S0 )(Si 07, IN|IM)

X(taTarty 7|ty ®MTYM (K), (A11)

initial state quantum numbeds |, s;, andt. Then, by em- The three-body final state wave function given in Eq.
ploying standard angular momentum identitisse, for ex-  (A5) must also be expanded in terms of angular momentum
ample, Ref[46]) we obtain eigenfunctions. For now we keep the discussion general and
allow all three particles to have nonzero spin. Symbolically,
— A S.04,Sh0p|S oS 0 IN|IM the coupling order we adopt is
Vi ZV M,)%i,7'< a%a: S| 501 {Si071, N[ IM) {[(s1,82)s1:1pli:[S3;141j '}’ for the angular momenta and
] . . [(tq1,to)ts;t3]t" for the isospins. The corresponding angular
X (taTa tomolt7) Ji(KiF) VI TYI* (i), (A8)  momentum/isospin functions are
y%w’f/: E <Slo'1as20'2|sf0'f><sf0'falp)\p|jm><530'3!|q)\q|j,m,><jmrj,m,|JIM,><tl7'1vt27'2|tf7'f>

0q,09,03,0¢,mm’
71,7'2,7'3,Tf,)\p,}\q

. ) N N/ 2 C C
X{tye tamalt’ 7 )i'e T a Y1P(p) Yy (a) X1 X352 X33 0yt 2 mgd, (A12)

where in this contexg is shorthand for the final-state quantum numbgrs,, j, j’, J', s, t¢, andt’. The expansion af;
in terms of the) functions is
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'ﬂf:(4ﬂ)2% > (8101,5,02|St0)(S107¢ | A pl iM) (8503, 1 A gl | "M )(jm,j M [I" M )(ty 74, to7o|te7s)

M',a'f \TE N

m,m’,)\p,xq
Xt tamslt' 7, (PY) 1 (A) Y, P (P) Ypo (@) VT (A13)
We may now obtain the partial wave expansiorf pby substituting Eqs(A11) and (A13) into Eq.(A4). The result is
01,09,0 . 2 1/24E M2
fr 32'(—) 2—4 > (Sa0a 550|511 )(Si 07 INIMNtaTa Ly |t T)(S1071,Sp072] St )
ar’b 7T§ V,,B,M,M')\,o'i T

[ort ,m,m',rf ,}\p,)\q
X(stos I pNplim)(S3073,1gNglj "M )(jm,j ' m’[3" M)ty 71, tomo|te 7o) ts7s  taTglt’ 77)
(i1, (Pr) fi(@p) VR [V @Y Y™ (k) Yi(P) Y (@). (AL14)

At this point we can simplify the result by assuming that the interaction potéptiala rotational scalar in both ordinary
and isospin space. It follows that the matrix elements are nonzero ol Nbjt, 7} ={J",M’ t’,7'}. Furthermore, we know
from the Wigner-Eckhart theorem that, for a given set of quantum numtasrd 3, the matrix elements are independent of
both M and . With this in mind we adopt the shorthand notation

Ual€)=+23+1 (i (pr) Ji (ap) VIV @), (A15)

where, as in Eq10), « is shorthand for the full set of initial- and final-state quantum numbers. We see fralbjthat
the matrix element, depends explicitly on the momentum paramefeend q. These parameters are constrained by the
requirement that the total kinetic energy in the final state muB;bend thereford) is effectively a function of the energy

sharing parameter.
To obtain our final expression for the reaction amplitude we adopt the coordinate frame of Fig. 1, in whizkighe

alongk; . The result is

o om0 8i\/§EBt/~LlM2
fgi',gi' 3= T —F mE (8a0a,Sp0p|S107)(8;07 10| IM)(ta 74 , 1y 7o |t T)(S1071,S,07| St 0¢)
a,m,oj,7

[oxt ,mp ,mq T ,)\p ,)\q

X(st0¢ | phpl§ pMp) (S35, A gl gMg) (oM 1] Mg IM)(t1 71, to 7o te 7o)ty 7,y 7o E7)

21+1]Y2 NP
p q
2771 Yl YiF(p) Y ia). (A16)

X

Equation(A16) simplifies considerably if we specialize fop— pp=°. In this case the isospin Clebsch-Gordan coefficients
become constant numerical factors. In addisgns zero and,=j4. The result is

1/2

01,0 8| EBt,lLllle 2|+1 i
ga,gbzﬁ TQ‘MM ™ 27+1 (8a02,Sp0b|S107)(8;07 ,10[IM) (8,01 ,5,05| St )(Sp 0 vlp)\pljm>
)\p,U'f ,)\q
X(im.lghglIM) U (€)Y (P) Y4(@). (A17)
|
2. Cross section and polarization observables proportionality constant involves only kinematic factors.

For our purposes it is useful to introduce a “reaction ma-
In most respects, the procedure for obtaining the observ-  Mixlirectly proportional td, with normalization chosen
ables from the reaction amplitude is the same as for reactioits such a way that the spin-dependent partial cross section
with two-body final states. In particular one can showAo for reactions leading from initial staig,,oy, to final
that the fivefold differential cross section for a three-bodystater;, o5, with p andq in the intervalsAQ, and AQ,
final state is proportional td4f; (averaged over initial and with the energy-sharing parametén the intervalA € is
spin states and summed over final spin statebere the given by
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Ao=|M7722AeAQ,AQ,. (A18) 1 _

a’b Ti+1= IE(UXiIUy), (A24)
For the case in which is taken to be thpp relative kinetic
energy[as in Eq.(21)] the result foM is wherel is the 2x2 unit matrix. Associated with these op-

erators, there is corresponding set of “spherical tensor” po-
1/2

V7172 gi| H12Pd 21+1]%? larization observablel}7]
Tty O UiAS | anfrm | 2041
Np T\ — (b) (t) t
P Thay k™ 25,7 1) (2557 1) 1M Thyey® Tiga,M -
X<Sa0-avsb0-b|si0-i><sio-i1|0|‘JM> (A25)
X(81071,8,05|St0¢)(St ¢, | A pl JM) From the definitions given above, it is straightforward to

find simple relationships between the Cartesian analyzing
powers and spin correlation coefficients and the spherical
tensor observables. The relevant formulas are

XMl gAglIM) U Y} (p) Y, 9(0), (A19)
p q

wherev; is the relative velocity in the initial state.

The differential cross section and polarization observables 0= Too,00
may now be obtained directly from the reaction matixn
general, the observabl@sare found by taking the trace of a ToA0=—2Im[ Ty 0d,

matrix product, i.e.,
00A20=T1o,00
O=TI{MTMT], (A20)
00Az7=T1o,10

whereT is the appropriate operator. To obtain the unpolar- ooAs=—2 Re[T ]
ized cross section, the partial cross sections of £8) are 0 11,115
to be summed over final states and averaged over initial ooAL=2 Re[T11 1]
states with the result 0ma i

00 AG=— \/E Re[T11,1d,
— T
70 GeA D25t MM (A2D) ToA==21m[Ty1 4 4]. (A26)

The polarization observables are obtained by using the The introduction of the spherical tensor spir_1 operators
appropriate spin operators fdrin Eq. (A20). For the ana- leads to a compact, general formula for the partial-wave ex-

lyzing powers the operators we want are the Pauli matriceBansion of the observables. The simplification comes from
and the result is the fact that the spin operators of E424) can be repre-

sented in angular momentum language:

(ToA

ioz(zs D) (25 1) TIMaoMT],  (A22) <U’|qu|0',>:(—)570',\/28+1<SO',S—O',||(C]>. (A27)

- o To obtain the partial-wave expansion formula we now
where the subscriptcan bex, y, orz. In a similar way, the  substitute this expression, along with E419) for M, into
spin correlation parameters are obtained by using'ftte  Eq. (A25). The angular dependence of the observables is

direct product of the Pauli matrices for beam and target paexpressed as an expansion in terms of bipolar harmonics:
ticles:

A A A ~ A ~
B, L (P= 2 {LpAp L AdlLQ) YL2(P) YL@,
(A28)

T MteP & o{"tM™].
(A23)

TN = (s T 1) (2554 1)

After carrying out an angular momentum reduction that
Obtaining the partial-wave expansions is simplified c:On_elimi_nates the sums over the magnetic quantum numbers we
siderably if one introduces spherical tensor spin operators fPtain the result
use in place of the Cartesian spin operators that appear in 1
Egs. (A22) and (A23). The new operators transform under Thiq, koa,=
rotations like the spherical harmonics and are defined, for  * 22 (283+1)(28+1)
each particle, by the equations [
L

16y opq
Uj ’7Tﬁ5

X 2

L

S, cenis Ue) u;m}

’TOOZI, p’LQ‘ a,a’

XBE | (PO, (A29)

710~ Oz,
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where the labek is shorthand for the indicdsq,,k,q, and  ficients is a sum of terms involving an angular momentum

whereQ=0q;+ Q5. coupling coefficieniC and a bilinear product of matrix ele-
Equation (A29) represents our central result for the mentsU,. The selection rules that determine which partial-

partial-wave expansion of the cross section and polarizatiogave combinations contribute to a given angular function are

observables. Each observable has a set of allowed anguigntained in thec coefficients.

dependenceﬁ?p',_ql(ﬁ,(j), and the factor inside the square  The angular momentum coefficients are given by the fol-

brackets gives the expansion coefficient. Each of these codbwing expression:

’.
a,a’ K

Lo = ()l TS s S (2504 1)(285+ 1)(2Ka + 1)(2ko+ 1)(2K+ 1) X (21 +1)(25+1)(28] +1)
A ST

X(21+1) (21" +1)(21p+ 1) (21, +1)(214+1)(214+1)(2j+1)(2)" +1)(2J+1)(23" + 1)1¥2(10,I’0]10)

S J |
X(10,KQILQ)(130,170]L 101 40.10]L 40} Ky koo KQ) W(j ¢, L 1315, i )4 ST 3 17
K L |

iolg J S
X ] ! | a J’ Sy Sp k2 i (A30)
L si s K

This equation differs from the analogous formula given irable. The constraints, which arise from conservation laws
Ref.[9] in two respects. First of all the Clebsch-Gordan co-and the antisymmetrization requirements, can be seen by in-
efficient (10,I’0/10) was inadvertently omitted in Reff9].  specting Eq(A30).
Second, we have changed the coupling order for the angular The first constraint comes from ti#g o factor. Forpp

. i . 5t
momenta in the initial staisee Eqs(A8) and(A9)] and this —pp#®, s; is thepp total spin quantum number. Since we

results in additional phase factorsGn o have only antisymmetripp states, the conclusion is that
Although the expression given in E&30) is fairly com-  here will be no interference between evgnand oddl,
plex, the coefficients are easily evaluated since computef, tial waves.

codes for calculating the Clebsch-Gordan, Racah, gnd 9 Thg pext constraint is on the allowed values pf This
syr_lrjﬁglsea;zr:e_?)('iqll);o?r\]/qal:gble._ en in EQL) are obtained constraint comes from the Clebsch-Gordan coefficients
xpans ulas given | : (1,0,170|L,0) which requires that, || andL, satisfy the
: " : pUilp0lLp plp p
most readily by substituting EdA28) into Eq. (A29) to triangle inequality and also thbg+|£,+ L, be even. There

obtain are analogous constraints bg. Thus, for example, interfer-
ence betwee®s and Pp may give rise to angular distribu-

) tions withL,=0 and 2 and with.,=1. For the conditions
we assume, the angular distributions involve no spherical

) harmonics of degree greater tHan 2.
X > { > X Ug(e) UZ/(f)} One can easily demonstrate from EA30) that X coef-
bpibam P ficients are either symmetric or antisymmetric under the in-
terchange ofvr anda':

1

- _ 16u1 2P q
kidu ka2 (2s,+1)(2s,+1)

Ui7Tﬁ5

XYL (P) Y2 #(@), (A31)

where the coefficientx are given by fl’)‘fL;qK,,F(—)kﬁkzxfp',ch'(,u- (A33)

Xf"f’L;’ﬁM:2 (Lps,LqQ—u|LQ) CI*%, . (A32)  This means that the unpolarized cross section and the spin
P - P correlation parameters depend only o RgJU”,] whereas

Equations(11) are then obtained by using E&31) in con-  the analyzi_ng POWErS depenfi qnly orfUnu7,]. One con-
junction with Eqs.(A30) and (A32) assuming that only the Sequence is that the factor inside the square brackets in Eq.
partial waves of Table | contribute and that terms quadratieA29) is either purely real or purely imaginary. From this it

in Sd or Ds are negligible. In general, one finds that only afollows that a given observable will depend either on
few distinct angular functions are allowed for each observRe[Yfp(p) Y(L?q_“(q)] or on Ir‘r[Y’fp(p) Y‘Bq‘“(q)], and as a

064002-23



H. O. MEYERet al. PHYSICAL REVIEW C63 064002

result the¢ dependences of the allowed angular distributionst Q ¢,].

are relatively simple. In particular we see tlgtA,, and The formalism outlined in this appendix leads to a num-
oAz (both of which haveQ=0) go as sifu(¢,—¢)],  ber of additional useful results that are described in the main
while the remaining observables go as [p6$,—¢,)  textand in other publications.
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