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1 Outline of decay rate calculation
Calculating the rate of either neutrinoless or two-neutrino double beta decay is a tricky business, because it involves
understanding the properties of the nucleus that is undergoing decay. Here we present a valiant attempt that
illustrates a lot of the key physics, but necessarily involves skipping steps and making simplifications that are not
made in modern theoretical calculations. At the nucleon level, the Hamiltonian is1:

H =
(√

2GF |Vud|
)2

[ēLγµ(1− γ5)νL] [−ν̄cLγµ(1− γ5)e
c
L] [p̄γ

µ(1− gAγ5)n] [p̄γ
µ(1− gAγ5)n] (1)

Many elements of this object are familiar; we have the Fermi constant twice - expected for a second order weak
process; the CKM matrix element |Vud|, since the W bosons here couple u’s to d’s; Two terms for leptonic vertices,
though one of them is a bit weird looking compared to what we might expect in a more garden-variety process due
to those conjugate operations - we will be contracting this with the other term to form a propagator soon; and then
two hadronic currents that turn protons into neutrons. We also see the weak vertex terms: γµ(1− γ5) as expected
at the leptonic vertices, but γµ(1− gAγ5) at the hadronic ones. The value of gA is modified by nuclear effects, and
depending on which nuclear formalism is being used, it may or may not already be accounted for in the nuclear
matrix elements. Going from the Hamiltonian to a matrix element involving initial, final and intermediate nuclei is
non-trivial, and we’ll sketch it only in outline.

1.1 From Hamiltonian to matrix element
The Hamiltonian Eq. 1 can be taken as being a reasonable one for both two-neutrino and neutrinoless decays. In
the case of neutrinoless double beta decay, the neutrino that is emitted at one vertex is absorbed at the other one.
In quantum field theory this corresponds to replacing the two ν fields in the above expression with a fermionic
propagator, and it turns out that the propagator here is the same one we would expect for Dirac fermions (See Ref
1):

⟨νL(x)ν̄L(y)⟩ →
1

(2π)4

ˆ
d4k

̸ k +m

k2 −m2
e−ik(x−y) (2)

The “propagator” for the nucleon part, on the other hand, is a sum over intermediate nuclear states n, and we’ll
mostly kick it out into a nuclear matrix element later anyway:

[p̄γµ(1− gAγ5)n] [p̄γ
µ(1− gAγ5)n] →

∑
n

⟨Ni|Jµ|n⟩⟨n|Jν |Nf ⟩ (3)

The relevant matrix element for the process ultimately takes the form:

M = −2G2
F |Vud|2

∑
n

ˆ
d4k

(2π)
4 ū(p1)

1− γ5
2

γµ
̸ kν +m

k2ν −m2
γν

1− γ5
2

v(p2)e
ik⃗ν .r⃗× (4)

⟨Ni|Jµ|n⟩⟨n|Jν |Nf ⟩2πδ(kν − E1i + E1n + ϵ1) (5)

the labels here are:

• kν : neutrino momentum
1Following Fukugita, Masataka, and Tsutomu Yanagida. Physics of Neutrinos: and Application to Astrophysics. Springer Science

& Business Media, 2013, and Haxton and Stephenson, Nuclear Physics, Vol. 12*, 409-479
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• E1i : nucleon 1 initial energy

• E1n: nucleon 1 intermediate state energy

• ϵ1: first electron energy

It is challenging to evaluate the sum over intermediate states that features in the matrix element, because the
matrix element is an expression of the form

M ∼
∑
n

⟨Nf |J1|n⟩⟨n|J2|Ni⟩A(E1n) (6)

Where A(En) is a function of the intermediate state energy, and ⟨Nf |J1|n⟩ are complex objects involving
overlap of various nuclear wave functions, which are between difficult and impossible to calculate, for the heavy
nuclei involved in 0νββ. However, if we make the approximation that A(E1n) ∼ A(⟨Eint⟩), the sum becomes more
manageable, only acting on the current matrix elements:

M →

(∑
n

⟨Nf |J1|n⟩⟨n|J2|Ni⟩

)
A(⟨Eint⟩) → ⟨Nf |J1

(∑
n

|n⟩⟨n|

)
J2|Ni⟩A(⟨Eint⟩) (7)

And we also note that, since the sum is over a complete set of states,
∑

n |n⟩⟨n| = 1, we get

= ⟨Nf |J1J2|Ni⟩A(⟨Eint⟩) (8)

It is this approximation that allows us to fully factorize the matrix element into independent hadronic and
leptonic tensors:

M = −2G2
F |Vud|2

∑
n

Ln
µνH

µν
n → −2G2

F |Vud|2 LµνH
µν (9)

And so the spin-summed matrix element squared needed to calculate a decay rate has the form:

⟨|M|2⟩ = 4G4
F |Vud|4

∑
spins

LσρLµν

 (HσρHµν) (10)

The leptonic part has a form that looks like it should be manageable:

Lµν =

ˆ
d4kν

(2π)
4 ū(p1)

1− γ5
2

γµ
̸ kν +mν

k2ν −m2
ν

γν
1− γ5

2
v(p2)e

ik⃗ν .r (11)

Considering for a moment the two added terms in the propagator, we see that the two chiral projectors force us
to keep only the mν term, since:

1− γ5
2

γµ ̸ kνγν
1− γ5

2
= γµ

1 + γ5
2

̸ kνγν
1− γ5

2
(12)

= γµ ̸ kν
1− γ5

2
γν

1− γ5
2

(13)

= γµ ̸ kνγν
1 + γ5

2

1− γ5
2

= 0 (14)

So, we find:

Lµν = mν

ˆ
d4k

(2π)
4

1

k2ν −m2
ν

ū(p1)γµγν
1− γ5

2
v(p2)e

ik⃗ν .r (15)

Note that if mν = 0 then Lµν = 0 and the process cannot go, as expected. Next we can use momentum balance
in the denominator of the propagator to set:

k2ν −m2
ν = (p1i − pint − p1)

2 −m2
ν (16)

Continuing to re-organize:
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= (E1i − Eint − E1)
2 − (p⃗1i − p⃗int − p⃗1)

2 −m2
ν (17)

By momentum balance, p⃗1i − p⃗int − p⃗1 is the momentum of the neutrino, k⃗ν , so

= (E1i − Eint − E1)
2 − ϵ2ν (18)

Where here ϵν is the energy of the virtual neutrino. In continuing to manipulate the leptonic current, we can
use the identity

γµγν = ηµν +
1

2
σµν (σµν =

1

2
[γµ, γν ]) (19)

Lµν
n = mν

ˆ
d4k

(2π)
4

1

k2ν −m2
ν

ū(p1) (η
µν + σµν)

1− γ5
2

v(p2)e
ik⃗ν .r (20)

For super-allowed transitions, 0+ → 0+ there is no “magnetic” contribution and so we can drop the term
proportional to σµν . This leaves us with:

Lµν
n = mνη

µν

{
ū(p1)

1− γ5
2

v(p2)

}[ˆ
d4k

(2π)
4

eik⃗ν .r

(E1i − Eint − E1)2 − ϵ2ν

]
(21)

Using the spinor completeness relations we can now take care of the spinor part of the sum,

∑
spins

{
ū(p1)

1− γ5
2

v(p2)

}{
ū(p1)

1− γ5
2

v(p2)

}†

= Tr

[
(̸ p1 +me)

(
1 + γ5

2

)
(̸ p2 −me)

(
1− γ5

2

)]
(22)

In this trace, only the elements with both p’s survive:

= 4gαβp1αp2β (23)

This can then be used to evaluate the matrix element:

⟨|M|2⟩ = 4m2
νG

2
F |Vud|4 Hµ

µH
ρ
ρ

[
1

4π
F (r)

]2
2p1.p2 (24)

This is a schematic expression for the matrix element if we imagine there is only one kind of neutrino partici-
pating, with mass mν .

2 Multiple massive neutrinos in the three flavor paradigm
For each neutrino, there is an amplitude contribution that will involve two factors of the PMNS matrix, and the
neutrino mass (collecting into X everything that is not mνi of line 24):

Mi = X
∑
i

(Uei)
2
mνi (25)

And so the total matrix element will be the sum of these contributions, which ultimately gets squared in Fermi’s
Golden Rule for the decay rate:

⟨|M|2⟩ =

∣∣∣∣∣X∑
i

(Uei)
2mνi

∣∣∣∣∣
2

= |X|2 m2
ββ (26)

Above we have introduced the important effective parameter mββ :

mββ =
∑
i

(Uei)
2mνi (27)

And the spin-summed matrix element takes the form

⟨|M|2⟩ = 4m2
ββG

2
F |Vud|4 Hµ

µH
ρ
ρ

[
1

4π
F (r)

]2
2p1.p2 (28)
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3 The decay rate and phase space factor
To turn the matrix element into a decay rate you need to use Fermi golden rule with all its phase space factors and
delta functions, and all that. Noting that the product of momenta above is a four-vector product,

dΓ

d cos θ dE1
= G4

F |Vud|4
{

1

16π5
|p⃗1||p⃗2|p1.p2

}{
Hµ

µH
ρ
ρ

[
1

4π
F (r)

]2}{
m2

ββ

}
(29)

And so

Γ = G4
F |Vud|4

{ˆ
d cos θdE1

1

16π5
|p⃗1||p⃗2|

(
1− p⃗1.p⃗2

E1E2

)}{
Hµ

µH
ρ
ρ

[
1

4π
F (r)

]2}{
m2

ββ

}
(30)

The curly bracketed pieces are called respectively the “Phase Space Factor” (G), the “Nuclear Matrix Element”
(∥M∥), and the “Effective Majorana Mass” (m2

ββ). This is often written in compact form:

Γ = G ∥M∥ 2m2
ββ (31)

Occaisionally people will absorb the couplings and CKM elements into G, as:

G = G4
F |Vud|4 G̃ (32)

In the simplest version of the calculation of G̃, the kinematic part of G, we find:

G̃ =

ˆ
1

16π5
dE1d cos θ E1E2|p⃗1||p⃗2|

(
1− p⃗1.p⃗2

E1E2

)
(33)

This is an integral we can evaluate. First, we explicitly include the opening angle:

=

ˆ
1

16π5
dE1d cos θ E1E2|p⃗1||p⃗2|

(
1− p1p2

E1E2
cos θ

)
(34)

And note that the integral
´ 1
−1

d cos θ cos θ = 0, so only the left term survives the angular integration:

=
1

8π5

ˆ me+T0

me

dE1E1E2|p⃗1||p⃗2| (35)

Here T0 is the maximum allowed kinetic energy of electron 1, and hence E2 = T0+2me−E1. Writing everything
in terms of electron energies,

=
1

8π5

ˆ me+T0

me

dE1E1 (T0 + 2me − E1)
√
E1 −m2

e

√
(T0 + 2me − E1)

2 −m2
e (36)

This integral can be done either with blood, sweat and tears, or with Mathematica, with the result that:

=
m5

e

8π5

(
t50
30

+
t40
3
+

4t30
3

+ 2t20 + t0

)
t0 =

T0

me
(37)

A relatively simple answer emerges to a very complicated question. This is not quite the end of the story,
however, since in the full calculation we must also include the Fermi function F (E,Z) to account for the Coulomb
attraction of the electron leaving the nucleus. This correction accounts for the fact that the wave function of an
electron leaving as a plane wave is distorted by Coulomb attraction at the origin. The corrected expression for G̃
is:

G̃ =

ˆ
1

16π5
F (E1, Z)F (E2, Z)dE1d cos θ E1E2p1p2

(
1− p⃗1.p⃗2

E1E2

)
(38)

These coulomb effects must include relativistic corrections, and effects of shielding of the atomic electrons, which
makes the integral rather more complex, though it can be evaluated using numerical methods.
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4 The effective Majorana mass and the lobster plot
More interesting than the phase space factor is the effective mass that shows up in double beta decay rate of Eq.
28 is a weighted sum of the three neutrinos masses, each contributing proportionally to their probabilistic weight
within the electron neutrino flavor state:

mββ =
∑
i

(Uei)
2mi (39)

Note how this is different to the effective mass that appears in direct neutrino mass searches

m2
ν =

∑
i

|Uei|2m2
i (40)

That modulus makes all the difference, because in the direct neutrino mass case the various terms add in
magnitude (so they always add up), whereas in the 0nubb case they add in amplitude (so they can cancel). We can
express the matrix elements Uei in terms of the mixing angles and phases that traditionally parametrize the PMNS
matrix, to find:

mββ = c212c
2
13e

2iλ1m1 + c213s
2
12e

2iλbm2 + s213m3 (41)

Regarding the neutrino masses, all we know today are the their squared differences, accessed through oscillations.
We do not know the absolute mass scale (the lightest mi) or whether the observed bigger splitting is between the
heaviest two or lightest two neutrinos (the “mass ordering” or “mass hierarchy”). We do know all of the mixing angles,
with reasonable precision, from studies of neutrino oscillations between various flavors and on various baselines. We
might now know something about δCP - if we do then this is recent news, with some controversies still unresolved.
We know nothing about the Majorana phases λa and λb since they do not feature in oscillations, and we have little
hope of learning about them, short of observing neutrinoless double beta decay.

In terms of these known and unknown parameters mββ can be expressed as:

mββ = c212c
2
13m1e

2iλa + s212c
2
13e

2iλ2

√
m2

1 +∆m2
12 + s213

√
m2

1 ± |∆m2
23| (42)

The ± under the square root of Eq. 42 reflects that at the present time we know the absolute scale of ∆m2
23

(from atmospheric and accelerator neutrino experiments) but we do not know its sign (the “mass ordering”, or “mass
heirachy”). On the other hand, ∆m2

12 is known from solar neutrino oscillation experiments where the MSW effect
would drive oscillations differently depending on the relevant ordering, so we do know both its value and sign.

Given the freedom to choose all the unknown parameters λa, λb,m1 in Eq.42, as well as make one discrete choice
of the sign of ∆m2

23, we find two wide swathes of allowed decay rates. These bands are commonly represented on
what has become colloquially known as “lobster plot” of Fig. ??, right. Here the allowed values for the parameter
mββ featuring in the decay rate (or equivalently the lifetime) is shown with its allowed values plotted against the
lightest neutrino mass. The lifetime of neutrinoless double beta decay is proportional to |mββ |2.
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