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1 Oscillations in three flavors
Three flavor oscillations is an almost trivial extension of the two-flavor proof, but it requires carrying more param-
eters around. Now we have a three dimensional PMNS matrix, νe

νµ
ντ

 =

 Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

 ν1
ν2
ν3

 (1)

The most general unitary 3x3 matrix is more complicated than the most general unitary 2x2 matrix. In
particular, it requires multiple mixing angles is allowed to have up to three CP-violating phases (of which two can
be parameterized out by rephasing neutrino fields, if the neutrino is a Dirac particle). The standard parameterization
is

U3x3
PMNS =

 1 0 0
0 c23 s23
0 −s23 c23

 c13 0 s13e
−iδ

0 1 0
−s13e−iδ 0 c13

 c12 s12 0
−s12 c12 0
0 0 1

 1 0 0
0 eiλ1 0
0 0 eiλ2

 , (2)

and the Hamiltonian is a 3x3 diagonal matrix in the mass basis,

H =

 E1 0 0
0 E2 0
0 0 E3

 . (3)

Rather than carrying all these parameters along, we follow matrix notation, with the added benefit that this
will also work for N flavors. We start with initial state

|ψ(t = 0)⟩ = |να⟩ = Uαi|νi⟩. (4)

For a flavor transformation α→ β, the probability Pα→β is

Pα→β = |⟨νβ |ψ(t)⟩|2. (5)

Substituting in the flavor states in terms of mass basis states,

=

∣∣∣∣∣∣
∑
ij

(
|⟨νj |U∗

βj

)
e−iHt (Uαi|νi⟩)

∣∣∣∣∣∣
2

, (6)

and a little good ol’ fashioned quantum mechanics elbow grease will get us to

=

∣∣∣∣∣∑
i

e−iEit
(
U∗
βiUαi

)∣∣∣∣∣
2

. (7)

Since every term in this expression will have an eiEit multiplied by an e−iEjt for some i, j, we can subtract an
arbitrary constant from the energies (and hence from the Hamiltonian), without changing the oscillations. It is
thus convenient to subtract the energy that would be associated with a massless neutrino, as an overall constant.
In this case, the Hamiltonian matrix becomes
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H →

 E1 0 0
0 E2 0
0 0 E3

−

 E0 0 0
0 E0 0
0 0 E0

 =


m2

1

2E 0 0

0
m2

2

2E 0

0 0
m2

3

2E

 . (8)

The expression above thus becomes

Pα→β =

∣∣∣∣∣∑
i

e−i
m2

i L

2E

(
U∗
βiUαi

)∣∣∣∣∣
2

. (9)

Which is equivalent to

=
∑
i,j

(
UβiU

∗
αiU

∗
βjUαj

)
e−i

∆m2
ijL

2E (10)

2 C, P, CP and CPT in neutrino oscillations
Consider a neutrino oscillation probability between two flavors, α and β. We note that neutrinos are always
left-handed, so its a bit superfluous to write it down, but we’ll put an “L” index to remind us,

PναL→νβL =
∑
i,j

(
UβiU

∗
αiU

∗
βjUαj

)
e−i

∆m2
ijL

2E (11)

We are now going to consider what the effects of the discrete transformations C, P, CP and CPT on this
probability. C is the operation that transforms particles into antiparticles; P is parity, which transforms left-
spinning particles to right-spinning ones; and T is time reversal, which reverses the order of the oscillation. The
first thing we note is that each of C and P acting alone leads us to an unphysical place, since as far as we know,
right handed neutrinos and left handed antineutrinos do not exist:

PναL→νβL −→
P

PναR→νβR (12)

PναL→νβL −→
C

Pν̄αL→ν̄βL (13)

So, neutrino oscillations surely violate C and P symmetry since those transformations lead to unphysical pro-
cesses. This is fine, neutrinos are made in weak interactions and weak interactions are maximally parity violating
and near-maximally C violating.

C and P performed together, do transform an in-principle physical oscillation probability into another in-principle
physical one,

PναL→νβL −−→
CP

Pν̄αR→ν̄βR. (14)

The question of whether neutrino oscillations are CP-violating is therefore the question of whether these two
are the same:

Pνα→νβ
=? Pν̄α→ν̄β

(15)

IE, do neutrinos (which are necessarily left handed) and antineutrinos (which are necessarily right handed)
oscillate the same or differently?

All Lorentz-invariant quantum field theories are CPT invariant, thus it would be highly surprising if neutrinos
were to violate CPT. Under CPT the oscillation probability becomes

Pνα→νβ
−−−→
CPT

Pν̄β→ν̄α (16)

This enables for a direct test of CPT violation in oscillations by measuring the probabilities in appropriate pairs
of channels. As we’ll see, we cannot encode CPT effects in the mixing matrix, they would break the theory at a
deeper level.
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3 CP violation and the Jarlskog invariant
We are interested to explore the question, do neutrinos and antineutrinos oscillate differently? If they do, this is
evidence of leptonic CP violation. To dig into this question it helps to break the sum in P into two parts,

Pα→β =
∑
i=j

(
UβiU

∗
αiU

∗
βjUαj

)
+
∑
i>j

[(
UβiU

∗
αiU

∗
βjUαj

)
e−i

∆m2
ijL

2E +
(
UβjU

∗
αjU

∗
βiUαi

)
ei

∆m2
ijL

2E

]
(17)

The left term is equal to δαβ , through the unitarity of the CKM matrix. The right term can be written as a
real part,

= δαβ + 2
∑
i>j

R
[(
UβiU

∗
αiU

∗
βjUαj

)
e−i

∆m2
ijL

2E

]
(18)

A real number can be either a product of two reals of the product of two imaginaries,

= δαβ + 2
∑
i>j

[
R
(
UβiU

∗
αiU

∗
βjUαj

)
Re−i

∆m2
ijL

2E + I
(
UβiU

∗
αiU

∗
βjUαj

)
Ie−i

∆m2
ijL

2E

]
(19)

= δαβ + 2
∑
i>j

[
R
(
UβiU

∗
αiU

∗
βjUαj

)
cos

(
∆m2

ijL

2E

)
+ I

(
UβiU

∗
αiU

∗
βjUαj

)
sin

(
∆m2

ijL

2E

)]
(20)

Now we use a trig formula to obtain

1

2
− 1

2
cos

(
∆m2

ijL

2E

)
= sin2

(
∆m2

ijL

4E

)
(21)

So

= δαβ + 2
∑
i>j

[
R
(
UβiU

∗
αiU

∗
βjUαj

)(
2 + 2 sin2

(
∆m2

ijL

2E

))
+ I

(
UβiU

∗
αiU

∗
βjUαj

)
sin

(
∆m2

ijL

2E

)]
(22)

Unitarity ensures that
∑

i UβiU
∗
βj = 0 for α ̸= β, so

Pνα→νβ
= δαβ + 4

∑
i>j

R
(
UβiU

∗
αiU

∗
βjUαj

)
sin2

(
∆m2

ijL

2E

)
+ 2

∑
i>j

I
(
UβiU

∗
αiU

∗
βjUαj

)
sin

(
∆m2

ijL

2E

)
(23)

One of the reasons this form of the expression is convenient is that it explicitly separates the CP-violating
and non-CP-violating terms. If there is no oscillation-observable CP-violation, that is, if δ = 0, the right term is
zero. Thus this effect contains the CP violating part of the oscillation. To consider the effect of oscillations of
antineutrinos rather than neutrinos, take each U → U∗.

Pν̄α→ν̄β
= δαβ + 4

∑
i>j

R
(
U∗
βiUαiUβjU

∗
αj

)
sin2

(
∆m2

ijL

2E

)
+ 2

∑
i>j

I
(
U∗
βiUαiUβjU

∗
αj

)
sin

(
∆m2

ijL

2E

)
(24)

A complex conjugate of a product is equal to the product of the conjugates, so

Pν̄α→ν̄β
= δαβ + 4

∑
i>j

R
(
[UβiU

∗
αiU

∗
βjUαj ]

∗) sin2(∆m2
ijL

2E

)
+ 2

∑
i>j

I
(
[UβiU

∗
αiU

∗
βjUαj ]

∗) sin(∆m2
ijL

2E

)
(25)

And of course,

R (z∗) = R(z), I(z∗) = −I(z), (26)

implying that the CP-violating asymmetry is

Pνα→νβ
− Pν̄α→ν̄β

= 4
∑
i>j

I
(
UβiU

∗
αiU

∗
βjUαj

)
sin

(
∆m2

ijL

2E

)
(27)
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The particular combination of PMNS elements in this expression gives the “Jarlskog invariant”, a generic measure
of the amount of CP-violation in a mixed system,

I
(
UβiU

∗
αiU

∗
βjUαj

)
= J

∑
γ,l

ϵαβγϵjkl (28)

Substituting in the PMNS matrix elements we can extract the Jarlskog invariant for the three-neutrino system,

J = s13c
2
13s12c12s23c23 sin δ (29)

And the amount of CP-violation in a given oscillation channel να → νβ with β ̸= α can be found from Eq. 27
to be

Pνα→νβ
− Pν̄α→ν̄β

= 8J sin

(
∆m2

13L

4E

)
sin

(
∆m2

23L

4E

)
sin

(
∆m2

21L

4E

)
(30)

We infer from this derivation several important conclusions about CP-violation in the neutrino oscillation system:

1. CP violation is not possible for a two-neutrino system, because the most general mixing matrix has no complex
parameters.

2. CP-violation is not possible in disappearance channels where we search for να → να, because UαiU
∗
αiU

∗
αjUαj

is a real number. It can only be observed in appearance channels, να → νβ .

3. The Majorana phases λ1 and λ2 introduce no observable CP-violation into neutrino oscillations.

4. If any of θ12, θ13, θ23 are equal to 0 (or to π/2, π or 3π/2), there can be no CP-violation, due the form of Eq.
29.

5. A corollary of point (2), if any of the mixing angles are small, the observable size of CP violation in neutrino
oscillations is small, even for a large value of δCP .

6. CP violation is only observable at baselines sufficiently long that multiple oscillation wavelengths are active
(ie in the “three-neutrino oscillation” regime). Otherwise, one of the sin terms in the product 30 would be
zero.

4 CPT in neutrino oscillations
Comparing the predictions for the two channels

Pνα→νβ
−−−→
CPT

Pν̄β→ν̄α (31)

We find

Pνα→νβ
= δαβ + 4

∑
i>j

R
(
UβiU

∗
αiU

∗
βjUαj

)
sin2

(
∆m2

ijL

2E

)
+ 2

∑
i>j

I
(
UβiU

∗
αiU

∗
βjUαj

)
sin

(
∆m2

ijL

2E

)
(32)

Pν̄β→ν̄α = δβα + 4
∑
i>j

R
(
UαiU

∗
βiU

∗
αjUβj

)
sin2

(
∆m2

ijL

2E

)
− 2

∑
i>j

I
(
UαiU

∗
βiU

∗
αjUβj

)
sin

(
∆m2

ijL

2E

)
(33)

And since UαiU
∗
βiU

∗
αjUβj = [UβiU

∗
αiU

∗
βjUαj ]

∗ we find that no matter what the mixing parameters are,

Pνα→νβ
= Pν̄β→ν̄α

(34)

Thus we see that CPT invariance is built into this formalism, as indeed it is built into any Lorentz invariant
quantum field theory. Any observed violation of CPT would require not only modifications to the framework of
neutrino oscillations but to the foundations of the standard model at large.
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