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Fermi’s golden rule gives the rate of a beta decay as

Γ =

ˆ
d3pe
(2π)3

d3pν
(2π)3

d3pN
(2π)3

|Tfi|2δ(E0 − Ee − Eν − EN )δ3(p⃗0 − p⃗e − p⃗ν − p⃗N ). (1)

Here, pe, pν , pN and Ee, Eν , EN are the momenta and energies of the electron, neutrino and recoiling nucleus
respectively; p0 and E0 are the momentum and energy of the initial nucleus; |Tfi|2 is the decay matrix element
connecting the initial and final state. We can consider the initial nucleus and rest and neglect the the recoil energy
of the daughter nucleus, to find

Γ =

ˆ
d3pe
(2π)3

d3pν
(2π)3

d3pN
(2π)3

|Tfi|2δ(∆M − Ee − Eν)δ
3(p⃗e + p⃗ν + p⃗N ). (2)

Where ∆M is the mass difference between the parent and daughter nucleus. Since p⃗N now doesn’t feature
anywhere except in the delta function, we can integrate over it trivially, to obtain

Γ =

ˆ
d3pe
(2π)3

d3pν
(2π)3

|Tfi|2δ(∆M − Ee − Eν). (3)

The matrix element in beta decay has the general form:

|Tfi|2 = F (Z,E)G2
F |Vud|2 |Tfi|2. (4)

The factors in this expression are the Fermi constant GF , an element of the CKM matrix |Vud|2, the matrix
element calculated from spin-structure the nuclear wave function Tfi which is a dimensionless number that varies
slowly with energy, so can be approximated as (roughly) constant for the decay, and something called the “Fermi
Function”, F (Z,E) that accounts for the electromagnetic interaction of the outgoing electron with the nucleus.
We’ll ignore the Fermi function today.

1 Kurie plot with zero neutrino mass
When measuring the beta spectrum, we measure the emitted electron, and can thus can experimentally access the
differential decay rate dΓ

dEe
. This can be extracted from Γ as expressed below by turning the electron momentum

integral into an electron energy integral, in the following steps:

Γ =

ˆ
d3pe
(2π)3

d3pν
(2π)3

|Tfi|2δ(∆M − Ee − Eν), (5)

=

ˆ
d3pe

ˆ
p2νdΩνdpν

1

(2π)
6 |Tfi|2δ(∆M − Ee − Eν). (6)

If the neutrino is in fact massless then Eν = pν , and

Γ =

ˆ
d3pe

ˆ
p2νdΩνdpν

1

(2π)
6 |Tfi|2δ(∆M − Ee − pν), (7)

=

ˆ
dpe

[
1

2π3
p2e(∆M − Ee)

2|Tfi|2
]
. (8)

What we have here is an integral over a differential decay rate in pe,

Γ =

ˆ
dpe

dΓ

dpe

dΓ

dpe
=

1

2π3
p2e(∆M − Ee)

2|Tfi|2. (9)
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Figure 1: Approximate Q^5 dependence of beta decay

From this we can acquire dΓ
dEe

by change of variables,

dΓ

dEe
=

dpe
dEe

dΓ

dpe
. (10)

Since E2 = p2 +m2, we have EdE = pdP and dpe

dEe
= Ee

pe
, leading to

dΓ

dpe
=

1

2π3
peEe(∆M − Ee)

2|Tfi|2. (11)

Substituting in for |Tfi|2, we find

dΓ

dEe
= F (Z,E)

G2
F |Vud|2

2π3
|Tfi|2peEe(∆M − Ee)

2. (12)

Note that all of Ee, pe, E0 and the range of integration over which dΓ
dE must be integrated are of order Q =

∆M − me, and so one expects the rate of β decay to be roughly proportional to Q5. This effect, simply a
consequence of phase space arguments, is indeed observed for a large class of decays, as shown in the figure above.

A standard way to analyze the shape of the spectrum is via a Kurie plot. This plot involves plotting the function
K(Ee) against electron energy, where:

K(Ee) =

[
dΓ
dEe

F (Z,E)Eepe

]1/2
. (13)

If the nuclear matrix element Tfi had a non-trivial dependence on energy, this function could assume any shape.
However, if Tfi were independent of energy, this function would have the form

K(Ee) ∝ (∆M − Ee). (14)

This is a straight line intersecting the origin at the Q-value of the decay. For many nuclei this is exactly what
is observed. For example, Fig. 2, left shows a Kurie plot for 187Re - a beautiful, straight line.
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Figure 2: Left: Kurie plot from the MARE collaboration studying β decay of 187Re. Right: method of measuring
neutrino mass from distortion in the end-point of the Kurie plot of tritium (used for its very low Q-value)

2 Kurie plot with nonzero neutrino mass
Now, what if the neutrino mass were non-zero? This changes our math a little bit, starting at Eq. 6

Γ =

ˆ
d3pe

ˆ
p2νdΩνdpν

1

(2π)
6 |Tfi|2δ(∆M − Ee − Eν), (15)

=

ˆ
d3pe

ˆ
p2νdΩνdpν

1

(2π)
6 |Tfi|2δ(∆M − Ee −

√
p2ν +m2

ν) (16)

Using the the delta function integration trick,
´
dx δ(f(x)) =

´
dx δ(x−x0)

|df/dx| ,

=

ˆ
d3pe

ˆ
dΩν

1

(2π)
6 p

2
ν

√
p2ν0 +m2

ν

pν0
|Tfi|2 =

ˆ
d3pe

ˆ
dΩν

1

(2π)
6 pν0Eν0|Tfi|2 (17)

In the above expression, pν and Eν are now fixed at its value imposed by the delta function integration,

pν0 =

√
(∆M − E)

2 −m2
ν (18)

. Thus:

Γ =
1

2π3

ˆ
dpep

2
e

√
(∆M − Ee)2 −m2

ν(∆M − Ee)|Tfi|2 (19)

Everything now proceeds as it did before, just carrying along that extra square root term; we ultimately arrive
at a Kurie function that goes like

K(E) ∝
[
(∆M − Ee)

√
(∆M − Ee)

2 −m2
ν

]1/2
. (20)

How has this changed things? Well, when ∆M − Ee ≫ m2
ν , which is true almost everywhere in the spectrum,

the answer is, it doesn’t really change them at all; the expression reduces to the one we had for mν = 0. But,
very near the end-point when the electron energy is close to the end-point energy, the spectrum turns downward.
One way to think of this suppression is that, since the decay has to produce a neutrino with finite mass, there not
enough energy available to push the electron all the way up to the end-point.
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3 Multiple massive neutrinos
In real life, we don’t have just one kind of neutrino, we have three; the electron neutrino emitted in beta decay is
actually a quantum superposition of each of the three neutrino mass eigenstates,

|νe⟩ =
∑
i

Uei|νi⟩. (21)

Each νi has mass mi. How should we account for this in the decay rate calculation? First, we recognize that
because the final state is distinguishable for each kind of neutrino N0 → N + e + ν̄i, we should add the rates for
each mass state incoherently (that is, add the rates, not add the amplitudes), and so

dΓ

dEe
=
∑
i

dΓ

dEe,i
. (22)

Here, dΓ
dEe,νi

is the rate of decay to an electron of energy Ei accompanied by neutrino mass state ν̄i. Performing
the sum over mass states,

dΓ

dEe
= F (Z,E)

G2
F |Vud|2

2π3
|Tfi|2peEe(∆M − Ee)

(∑
i

|Uei|2
√
(∆M − Ee)2 −m2

i

)
. (23)

There is a little manipulation that can be applied to the term in brackets, which works only in the part of the
spectrum where ∆M −Ee

2 ≫ m2
i , for all of the m2

i . In that “degenerate region”, we can Taylor expand the square
root, and (∑

i

|Uei|2
√
(∆M − Ee)2 −m2

i

)
∼
∑
i

|Uei|2
(√

(∆M − Ee)2 −
m2

i√
(∆M − Ee)2

)
(24)

=

(√
(∆M − Ee)2

∑
i

|Uei|2 −
∑

i |Uei|2m2
i√

(∆M − Ee)2

)
(25)

Since by unitarity of the PMNS matrix
∑

i |Uei|2 = 1 it drops out of the first term, and so,

=

(√
(∆M − Ee)2 −

∑
i |Uei|2m2

i√
(∆M − Ee)2

)
(26)

And we can then “Taylor un-expand” again, to find approximate equivalence to

∼
(√

(∆M − Ee)2 −m2
ν

)
. (27)

mν is the effective electron neutrino mass, defined as

mν =
∑
i

|Uei|2m2
i (28)

This means that a massive and mixed neutrino distorts the end point of the beta spectrum in a similar way to
a single neutrino with the “PMNS-averaged” mass of its components.

dΓ

dEe
= F (Z,E)

G2
F |Vud|2

2π3
|Tfi|2peEe(∆M − Ee)

(√
(∆M − Ee)2 −m2

ν

)
(29)

There is one caveat to give, which is that if we are not considering a part of the spectrum where the approximation
∆M − Ee

2 ≫ m2
i is valid, this formulation is not appropriate. In that regime, if we look closely enough at the

spectrum, features associated with each mass of neutrino will generating a distinct kink. Those kinks are very
challenging to see for the normal active neutrinos; but in the case of heavy sterile neutrinos, for example, they may
appear further from the end point in an observable way. Experiments such as KATRIN perform analyses looking
for these kinks, setting useful limits on additional heavy neutrinos that could mix with the electron neutrino, in
addition to their flagship physics measurements targeting the active neutrino mass end-point effect embodied in
mν . In such a scenario, the full expression Eq. 23 should be used, rather than analyzing in terms of the effective
mν .
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Figure 3: Electron energy spectrum in the case where one neutrino mass is significantly heavier (e.g. Katrin sterile
neutrino search)

5


