
Math Interlude! Neutrino oscillations in matter

Ben Jones, National Nuclear Physics Summer School Lecture 2

1 Two flavor neutrino oscillations in vacuum
Neutrinos oscillate between flavors because they are both massive and mixed. The simplest way to see the emergence
of oscillations is to consider the two-flavor approximation, where there are two mass states νi for i = 1, 2, mixed
with two flavors να for α = e, µ. The flavor and mass states are related by a mixing matrix U ,(

νe
νµ

)
=

(
Ue1 Ue2

Uµ1 Uµ2

)(
ν1
ν2

)
, (1)

or in matrix notation,

|να⟩ = Uαi|νi⟩. (2)

For both the mass states and the flavor states to form complete quantum mechanical bases, U must be unitary,

U†U = 1. (3)

And the most general form of a 2x2 unitary matrix is (up to an irrelevant phase factor)

U =

(
cos θ sin θ
− sin θ cos θ

)
≡
(

c s
−s c

)
. (4)

Where for shorthand we introduce c, s = cos θ, sin θ. We have introduced the concept of a “mixing angle” θ,
which can be anything from 0 to 2π. For two neutrinos, there is only one relevant angle, θ. We consider a state
which is born in definite flavor, say the electron flavor,

|ψ(t = 0)⟩ = |νe⟩. (5)

Time evolution in quantum mechanics is accomplished via the time evolution operator, annoyingly also called
U , but in this lecture we’ll just write it in terms of the Hamiltonian Utime evol = e−iHt. We’re using natural units,
so ℏ = 1. Thus,

|ψ(t)⟩ = e−iHt|νe⟩. (6)

For vacuum oscillations, the Hamiltonian is diagonal in the mass basis - which can in fact be taken as the
definition of the mass basis. We label these energies of the two mass states as E1, E2. Thus,

H =

(
E1 0
0 E2

)
. (7)

To apply the operator e−iHt we need to write |νe⟩ in the basis in which e−iHt is diagonal - which is the same
basis as that in which H is diagonal. Proceeding to express |νe⟩ in the mass basis, then,

|ψ(t)⟩ = ce−iE1t|ν1⟩+ se−iE2t|ν2⟩. (8)

To find the flavor composition at some later time, we project onto a final state flavor state. For example, to find
the νe survival probability,

Pνe→νe
= |⟨νe|ψ(t)⟩|2 (9)

=
∣∣c2e−iE1t + s2e−iE2t

∣∣2 (10)
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=
(
c2e−iE1t + s2e−iE2t

) (
c2e−iE1t + s2e−iE2t

)∗
(11)

= c4 + s4 + 2c2s2 cos [(E2 − E1)t] (12)

Through a little trig magic, we can manipulate this to

= c2(1− s2) + s2(1− c2) + 2c2s2 sin [(E2 − E1)t] (13)

= 1− 2
(
s2c2

)
(1− cos [(E2 − E1)t]) (14)

= 1− sin2 2θ sin2
[
(E2 − E1)t

2

]
(15)

We note that since only energy differences feature in this expression, we can subtract an arbitrary offset energy
from all the entries in H without changing the picture. It will be helpful to subtract the energy of a neutrino with
zero mass, so

H →
(
E1 0
0 E2

)
−
(
E0 0
0 E0

)
(16)

=

( √
p2ν +m2

1 − pν 0

0
√
p2ν +m2

2 − pν

)
∼
(
m2

1/2p 0
0 m2

2/2p

)
(17)

And since the neutrino is highly relativistic, for all intents and purposes p ∼ Eν and t ∼ L, leading to the
oscillation formula

Pe→e = 1− sin2 2θ sin2
[
∆m2L

4E

]
(18)

Note that we use an approximation here that is in fact wrong; that all the neutrino mass states have the same
momentum. They actually do not - in the decay of a stationary pion, for example, two-body kinematics fixes both
the energy and the momentum of each neutrino mass state to distinct values. However, the differences from the
above treatment of oscillations are found to be of order ∆m4, and so they do not change the final answer for the
oscillation behavior given the small values of ∆m2.

2 Matter Potentials
Neutrinos forward-scattering in matter feel a potential which is non-diagonal in the mass basis, and this complicates
their evolution. Neutrinos can forward scatter off of electrons, protons or neutrons in the Earth. The Hamiltonian
governing charged current interactions between electrons and neutrinos, for example, takes the following form, of
an interaction between currents,

HCC =
GF√
2

[
ēγµ(1− γ5)νe

] [
ν̄eγ

µ(1− γ5)e
]
. (19)

Through Fierz rearrangement this can be shown to be equal to

HCC =
GF√
2

[
ν̄γµ(1− γ5)ν

] [
ēγµ(1− γ5)e

]
. (20)

The electron is unpolarized, which means only the γ0 component contributes,[
ēγµ(1− γ5)e

]
∼ ēγ0e− ēγ0γ5e (21)

The e, ν, ē, ν̄ here spinor wave functions, which can be written in terms of a Weyl spinor ϕ like

u(p) =

[
ϕ

σ⃗.p⃗
E+mϕ

]
, (22)
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And for reference, the gamma matrices in the Dirac basis are

γ0 =

(
1 0
0 −1

)
γi =

(
0 σi
σi 0

)
, γ5 =

(
0 1
1 0

)
. (23)

This means that when the electrons are non-relativistic, only the top spinor components are important, killing
off the γ0γ5 term, leaving us with

H =
GF√
2

[
ν̄(γ0 − γ0γ5)ν

] [
ēγ0e

]
=
GF√
2

[
ν̄e(γ

0 − γ0γ5)ν
]
ϕ†ϕ. (24)

ϕ†ϕ is nothing other than the electron density, Ne. Thus the charged current contribution to the neutrino-
electron matter potential is

V CC
νe,e = GF

√
2Ne. (25)

For neutral currents, we get more or less the same thing, but with the relevant gV and gA constants inserted,

HNC =
GF√
2

[
ν̄γµ(gV − gAγ

5)ν
] [
ēγµ(gV − gAγ

5)e
]
. (26)

gV = T3 − 2 sin2 θWQ, gA = T3 (27)

Adding together the charged and neutral current contributions for each species we obtain the following potentials,

Neutrino flavor Background flavor Potential

νe e ±GF (4 sin
2 θW + 1)(Ne +Nē)/

√
2− 8

√
2GFEν

M2
W

(⟨Ee⟩Ne + ⟨Eē⟩Nē)

νµ, ντ e ±GF (4 sin
2 θW − 1)(Ne −Nē)/

√
2

νe, νµ, ντ n ±GF (Nn̄ −Nn)/
√
2

νe, νµ, ντ p ±GF (1− 4 sin2 θW )(Np −Np̄)/
√
2

Where the ± in the above expressions refer to neutrinos vs antineutrinos, θW is the weak mixing angle, GF is
the Fermi constant, and Nx is the number density of species x. We see that in all cases the matter potential changes
sign when switching ν for ν̄. Generally speaking, the average energy of electrons in the material ⟨Ee⟩ ≪ mW , so
only the left term in the top row will matter to us. The second term for νee scattering that switches on when
Eν⟨Ee⟩ ∼ M2

W is associated with resonant production of W bosons at very high energies, and we can neglect it in
our energy range of interest. Furthermore, we note that in the earth there is very little antimatter, so we assume
a background of purely electrons, protons and neutrons, and all the Nx̄ are zero. As such we are left with the
following relevant set of potentials,

Neutrino flavor Background flavor Potential in Earth
νe e ±GF (4 sin

2 θW + 1)Ne/
√
2

νµ, ντ e ±GF (4 sin
2 θW − 1)Ne/

√
2

νe, νµ, ντ n ∓GFNn/
√
2

νe, νµ, ντ p ±GF (1− 4 sin2 θW )Np/
√
2

3 Two-flavor oscillations in matter
The Hamiltonian for our system is now the sum of the vacuum term with the matter potential, as

H =

(
E1 0
0 E2

)
+ U

(
Ve 0
0 Vµ

)
U†, (28)

where

Ve = Vee + Vep + Ven, Vµ = Vµe + Vµp + Vµn. (29)
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This looks set to be a rather complex operator, with all of those contributions to the potential folded in. However,
we use again the trick of subtracting a constant energy from the Hamiltonian to simplify it. Subtracting an offset
of size Vµ gives us

V = U

(
Ve − Vµ 0

0 0

)
U† = U

(
±
√
2GFNe 0
0 0

)
U†. (30)

We note in passing that we can subtract this constant in any basis, since unitarity of U guarantees that

U

(
Ve 0
0 Vµ

)
U† − V0 = U

(
Ve − V0 0

0 Vµ − V0

)
U†. (31)

Applying the two-flavor PMNS matrix to rotate to the mass basis,

U

(
±
√
2GFNe 0
0 0

)
U† = ±

√
2GFNe

(
c2 −cs
−cs s2

)
. (32)

And so we have the following total Hamiltonian, in the mass basis,

H =

(
1

2Eν
m2

1 ±
√
2GFNec

2 ∓
√
2GFNecs

∓
√
2GFNecs

1
2Eν

m2
2 ±

√
2GFNes

2

)
. (33)

Unless cos θ sin θ = 0, the mass basis is no longer the propagation basis which diagonalizes the Hamiltonian.
The neutrino will instead have “effective mass states” ν1m, ν2m, defined by being the basis states that do diagonalize
H. In the basis of ν1m, ν2m, the Hamiltonian has the form

Hm =
1

2Eν

(
M2

1 0
0 M2

2

)
, (34)

Linear algebra tells us that M2
1,2/2Eν are simply the Eigenvalues of H, which can be found in any basis. Finding

the eigenvalues from Eq. 33,

M2
2,1 =

(
m2

1 +m2
2 + 2

√
2GFNeE

)
±
[(

2
√
2GFNeE −∆m2 cos2 2θ

)2
+∆m2 sin2 2θ

]1/2
. (35)

The new effective ∆M2 that will appear in oscillations is thus

∆m2
m = 2

√(
2
√
2GFNeE −∆m2 cos2 2θ

)2
+∆m2 sin2 2θ. (36)

The basis in which H is diagonalized can be represented by a new PMNS-like matrix in matter, which relates
the new propagation states to the flavor states,(

νe
νµ

)
= Um

(
ν1m
ν2m

)
, Um =

(
cos θm sin θm
− sin θm cos θm

)
. (37)

Giving us an opportunity to define the new effective mixing angles in matter. Working from the eigenvectors of
H ′, we can find that the rotation needed is

sin2 2θm =

(
∆m2 sin 2θ

)2(
2
√
2GFNeE −∆m2 cos 2θ

)2
+ (∆m2 sin 2θ)

2
. (38)

Neutrino oscillations between flavor states in matter will thus be driven by “effective” mass-splitting and mixing
angles, as

Pe→e = 1− sin2 2θm sin2
[
∆m2

mL

4E

]
. (39)

We see that as Ne → 0, both θm and ∆m2
m revert to their vacuum values, as they must. However, we also see

that the effective mixing angle can become arbitrarily large, no matter how small the true neutrino mixing angle θ
is, for an appropriate density of matter. The density where it really goes off the charts is at

Nres
e =

∆m2 cos2 2θ

2
√
2GFE

. (40)
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In matter at that density the mixing becomes maximal, even for small true θ. The plots below shows the
dependence of the effective mixing and masses on A = 2

√
2GFNeE, showing a broad, “MSW resonant” behavior.

4 Adiabatic transport and solar neutrinos
In realistic applications, the density of matter is not constant, but will vary along the flight path of the neutrino.
For the lowest energy neutrinos traveling through the core of the Sun with electron density N☼ we have

E ≪ ∆m2 cos2 2θ

2
√
2GFN☼

. (41)

In this case,

sin2 2θm → sin2 2θ, ∆m2
m → ∆m2 (42)

And we recover exactly the same oscillation pattern as neutrinos in vacuum. For the higher energy neutrinos
on the other hand,

E ≫ ∆m2 cos2 2θ

2
√
2GFN☼

. (43)

In the very high energy limit, this drives the effective mixing angle to zero.

sin2 2θm ∼ 0 (44)

In practice this means that in middle of the sun, these higher-energy neutrinos are not mixed at all: an electron
neutrino is in fact simply a ν2m (in our two flavor picture it would have been a ν1m in the full three-flavor treatment
the ordering of the basis states is such that it turns out to be ν2m - but conceptually all the above arguments apply).

Now, we should keep in mind that what a ν1m is actually made of in terms of flavor states is constant changing
as the neutrino travels. If the density change is sufficiently slow, however, and the definition of ν1m changes slowly,
and the adiabatic theorem of quantum mechanics tells us that the neutrino will adiabatically remain stay a ν2m
all along its flight, being born as νe ∼ ν1m(center) and exit the sun as ν1 ∼ ν1m(surface). For high energy solar
neutrinos, the propagating neutrino changes flavor adiabatically, but it does not oscillate.

As such we make the following predictions about the behavior of solar neutrinos:

1. At low energies, the solar neutrinos experience a vacuum-like propagation, yielding a survival fraction averaged
over baselines of

P lowE
νe→νe

= 1− sin2 2θ12 sin
2

(
∆m2L

4E

)
. (45)
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The neutrinos from the sun are coming from many different baselines, so in fact the oscillation we see is
averaged over L, per ⟨sin2

(
∆m2L
4E

)
⟩ = 1

2 . The observed oscillation probability for low energy solar neutrinos
is thus

P lowE
νe→νe

∼ 1− 1

2
sin2 2θ12. (46)

The best-fit value of θ12 today is sin2 2θ ∼ 0.846 and so we find

P lowE
νe→νe

∼ 0.58. (47)

2. At high energies, solar neutrinos experience an adiabatic flavor evolution. This means they emerge from the
sun as ν2m, and the survival probability is thus

PhighE
νe→νe

= |⟨νe|ν2⟩|2 = sin2 θ12. (48)

A little trig ID gives us this in terms of sin2 2θ12,

PhighE
νe→νe

=
1− cos 2θ

2
=

1−
√
1− sin2 2θ

2
∼ 0.30. (49)

3. In the intermediate region we get a smooth connecting curve. Is is notable that in fact, neither the high or
low energy limits actually depend on the neutrino mass differences; as such to measure the solar ∆m2 it is
crucial to study this “upturn” region to determine the mass splittings.
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