
AI In a Nutshell:

How To Build a Machine Learning Model
Aobo Li
Halıcıoğlu Data Science Institute
Department of Physics
UC San Diego

National Nuclear Physics Summer School, 07/22/2024

1

Course Objectives
1. Understand Machine Learning from 0 background

• Assuming some background in Python programming

2. Solve a nuclear physics problem using real detector data

• Open time series data from the Majorana Demonstrator experiment

3. Building blocks for more advanced models and other experiments

• Next lecture: connecting dots between AI and NP

2

Course Outline
1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Model Building

Important equations/theoretical derivations you should understand

Fundamental concepts that appears everywhere in AI/ML paper and textbook

The actual PyTorch implementation, useful for building your own models

Theory

Concept

Code

3

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Light Emitting Diode (LED)
Semiconductor device with a depletion region

4

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Light Emitting Diode (LED)
Semiconductor device with a depletion region

High Purity Ge Detector (HPGe)
76Ge is a double-beta decay isotope

Reverse Bias: increase the size of depletion region

4

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Light Emitting Diode (LED)
Semiconductor device with a depletion region

Detector Array

High Purity Ge Detector (HPGe)
76Ge is a double-beta decay isotope

Reverse Bias: increase the size of depletion region

4

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

𝛾

𝛾 𝛾

𝛾

Point Contact

Point Contact

Single-Site Waveform

MAJORANA DEMONSTRATOR: HPGe Detector Array Experiment for 0𝑣ββ Search

5 Multi-Site Waveform

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

𝛾

𝛾 𝛾

𝛾

Point Contact

Point Contact

Single-Site Waveform

MAJORANA DEMONSTRATOR: HPGe Detector Array Experiment for 0𝑣ββ Search

5 Multi-Site Waveform

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

𝛾

𝛾 𝛾

𝛾

Point Contact

Point Contact

Single-Site Waveform

MAJORANA DEMONSTRATOR: HPGe Detector Array Experiment for 0𝑣ββ Search

5 Multi-Site Waveform

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

𝛾

𝛾 𝛾

𝛾

Point Contact

Point Contact

Single-Site Waveform

MAJORANA DEMONSTRATOR: HPGe Detector Array Experiment for 0𝑣ββ Search

5 Multi-Site Waveform

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

𝛾

𝛾 𝛾

𝛾

Point Contact

AvsE
For multi-site background rejection

Point Contact

Single-Site Waveform

MAJORANA DEMONSTRATOR: HPGe Detector Array Experiment for 0𝑣ββ Search

5 Multi-Site Waveform

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

𝛾

𝛾 𝛾

𝛾

Point Contact

Energy

AvsE
For multi-site background rejection

Point Contact

Single-Site Waveform

MAJORANA DEMONSTRATOR: HPGe Detector Array Experiment for 0𝑣ββ Search

5 Multi-Site Waveform

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

𝛾

𝛾 𝛾

𝛾

Point Contact

Energy

AvsE
For multi-site background rejection

Point Contact

Tail Slope
For surface background rejection

Single-Site Waveform

MAJORANA DEMONSTRATOR: HPGe Detector Array Experiment for 0𝑣ββ Search

5 Multi-Site Waveform

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

𝛾

𝛾 𝛾

𝛾

Point Contact

Energy

Drift Time
Reflect the location of incident particle

AvsE
For multi-site background rejection

Point Contact

Tail Slope
For surface background rejection

Single-Site Waveform

MAJORANA DEMONSTRATOR: HPGe Detector Array Experiment for 0𝑣ββ Search

5 Multi-Site Waveform

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Dataset: https://zenodo.org/records/8257027
Document: https://arxiv.org/abs/2308.10856

This is real data from a state-of-the-art
physics experiment, feel free to play with it
to do your own machine learning project!

More on MJD: https://www.energy.gov/science/
np/articles/majorana-demonstrator-gives-its-

final-answer-about-rare-nuclear-decay

AvsE
Energy

Tail Slope

6

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Dataset: https://zenodo.org/records/8257027
Document: https://arxiv.org/abs/2308.10856

Time Series Data

This is real data from a state-of-the-art
physics experiment, feel free to play with it
to do your own machine learning project!

More on MJD: https://www.energy.gov/science/
np/articles/majorana-demonstrator-gives-its-

final-answer-about-rare-nuclear-decay

AvsE
Energy

Tail Slope

6

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Dataset: https://zenodo.org/records/8257027
Document: https://arxiv.org/abs/2308.10856

Time Series Data

Energy Spectrum

This is real data from a state-of-the-art
physics experiment, feel free to play with it
to do your own machine learning project!

More on MJD: https://www.energy.gov/science/
np/articles/majorana-demonstrator-gives-its-

final-answer-about-rare-nuclear-decay

AvsE
Energy

Tail Slope

6

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

All files are stored in .hdf5 format
More readings on HDF5: https://web.mit.edu/fwtools_v3.1.0/www/
H5.intro.html

Code
Read file with h5py.File command

Read “energy” field with indexing

Read “waveform” field with indexing
……

7

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Take a look at raw waveforms:

psd_label_low_avse == 0

psd_label_low_avse == 1

8

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Take a look at raw waveforms: Alarm: tail region is too long, but it does not contain physics

Alarm: Waveforms may starts
rising at different positions

Alarm: Wavefomrs have
different hieight due to energy
difference.

psd_label_low_avse == 0

psd_label_low_avse == 1

8

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Concept
Data Preprocessing: Transform our data in certain way so that unwanted features does not affect
model training

Windowing: zoom in to the rising edge of the waveform that contains most of the physics

Before After

9

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Concept
Data Preprocessing: Transform our data in certain way so that unwanted features does not affect
model training

Normalizing: make sure all waveforms are of the same height (remove energy dependency)

Before

Code wf_norm = (wf - wf.min()) / (wf.max() - wf.min()) # wf is a 1-d numpy array

After

10

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Concept
Data Preprocessing: Transform our data in certain way so that unwanted features does not affect
model training

Code

Concept
Standard Scaler: transform each dimension of data so that its mean = 0 and standard dev. = 1

sklearn package contains Standard
Scaler
from sklearn.preprocessing import
StandardScaler
scaler = StandardScaler()

Has to be applied over multiple wfs
wf_norm = scaler.fit_transform(wf_arr)

11

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Code
Putting everything into a PyTorch Dataset class

12

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Code
Putting everything into a PyTorch Dataset class

• Only called once when initializing the object
• Read information from the .hdf5 file into array(s)

• apply dataset-level pre-processing like StandardScaler
self.waveform: (65000, 1000)

self.energy_label: (65000,)

self.psd_label_low_avse: (65000,)

12

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Code
Putting everything into a PyTorch Dataset class

• Only called once when initializing the object

• Read information from the .hdf5 file into array(s)

• apply dataset-level pre-processing like StandardScaler
self.waveform: (65000, 1000)

self.energy_label: (65000,)

self.psd_label_low_avse: (65000,)

• Return length of the dataset

• Called whenever we run len(dataset_object)

65000

12

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Code
Putting everything into a PyTorch Dataset class

• Only called once when initializing the object

• Read information from the .hdf5 file into array(s)

• apply dataset-level pre-processing like StandardScaler
self.waveform: (65000, 1000)

self.energy_label: (65000,)

self.psd_label_low_avse: (65000,)

• Return length of the dataset

• Called whenever we run len(dataset_object)

65000• Return one data point at input index idx

• Datapoint-level preprocessing can go here (i.e.

Normalizing)

• Will be called very frequently during network training and

validation

• Don’t put slow operations here! self.waveform[idx], self.psd_label_low_avse[idx], self.energy_label[idx]

12

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Code
Putting everything into a PyTorch Dataset class

• Define as many helper functions as you like

• Only called once when initializing the object
• Read information from the .hdf5 file into array(s)

• apply dataset-level pre-processing like StandardScaler
self.waveform: (65000, 1000)

self.energy_label: (65000,)

self.psd_label_low_avse: (65000,)

• Return length of the dataset
• Called whenever we run len(dataset_object)

65000• Return one data point at input index idx
• Datapoint-level preprocessing can go here (i.e.

Normalizing)
• Will be called very frequently during network training and

validation
• Don’t put slow operations here! self.waveform[idx], self.psd_label_low_avse[idx], self.energy_label[idx]

12

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Code
Used the pre-defined class on last slides to construct training and testing
data loader

Define dataset Object

Obtain training and
validation indices

Shuffling indices

Create sampler based
on the indices list

loader = dataset + sampler

Batch: group n waveforms together into a 2D array

(1000,) → (BATCH_SIZE, 1000)

13

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Time Series Data
(BATCH_SIZE, 1000)

Model
Map input to output

Signal or
Background

(batch_size, 1)

Event Energy
(batch_size, 1)

psd_label_low_avse
(batch_size, 1)

energy_label
(batch_size, 1)

14

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Perceptron Learning
(Linear Classifier)

σ

Non-linear Activation

Neuron

Layers
Many parallel neurons

Deep Neural Networks
Adding more layers!

Input Layer
Hidden Layer

Output Layer

Time Series Data
(batch_size, 1000)

Concept
Elements of NN Layers:

• Input dimension

• Output dimension

• Activation function
15

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

NNLayer(1000,512) → σ

→ NNLayer(512, 256) → σ

→ NNLayer(256, 32) → σ

→ NNLayer(32, 1) → σ

Time Series Data
(BATCH_SIZE, 1000)

Model
Map input to output

Event Energy
(batch_size, 1)

psd_label_low_avse
(batch_size, 1)

energy_label
(batch_size, 1)

Concept

16

Signal or
Background

(batch_size, 1)

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

NNLayer(1000,512) → σ

→ NNLayer(512, 256) → σ

→ NNLayer(256, 32) → σ

→ NNLayer(32, 1) → σ

Feature Extractor
Network

Take raw data as the input and
output a low-dimensional vector

Time Series Data
(BATCH_SIZE, 1000)

Model
Map input to output

Event Energy
(batch_size, 1)

psd_label_low_avse
(batch_size, 1)

energy_label
(batch_size, 1)

Concept

16

Signal or
Background

(batch_size, 1)

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Code

17

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Code• Only called once when initializing
the neural network object

• Define network structures

17

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Code• Only called once when initializing
the neural network object

• Define network structures

Linear Layer:

• Defined with input & output dim

17

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Code• Only called once when initializing
the neural network object

• Define network structures

Linear Layer:

• Defined with input & output dim

Activation Function:

• Adding non-linearity to NN
• ReLU is most commonly used

17

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Code• Only called once when initializing
the neural network object

• Define network structures

Linear Layer:

• Defined with input & output dim

Activation Function:

• Adding non-linearity to NN
• ReLU is most commonly used

Forward Pass:

• Feed data through the neural

network to obtain desired
outputs
• (BS, 1000,)→(BS, 1)

• Called multiple times during
training and validation

 Backward Pass will be discussed in Sec. 4!
17

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

NNLayer(1000,512) → σ

→ NNLayer(512, 256) → σ

→ NNLayer(256, 32) → σ

→ NNLayer(32, 1) → σ

Feature Extractor
Network

Take raw data as the input and
output a low-dimensional vector

Time Series Data
(BATCH_SIZE, 1000)

Model
Map input to output

Event Energy
(batch_size, 1)

psd_label_low_avse
(batch_size, 1)

energy_label
(batch_size, 1)

Concept

18

Signal or
Background

(batch_size, 1)

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

NNLayer(1000,512) → σ

→ NNLayer(512, 256) → σ

→ NNLayer(256, 32) → σ

→ NNLayer(32, 1) → σ

Feature Extractor
Network

Take raw data as the input and
output a low-dimensional vector

Time Series Data
(BATCH_SIZE, 1000)

Model
Map input to output

Event Energy
(batch_size, 1)

psd_label_low_avse
(batch_size, 1)

energy_label
(batch_size, 1)

Concept

Concept
Task Module: Task Layer + Loss Function
• Task Layer: Take low-dimensional vector as

input and produce a value/vector as output
• Loss Function: produce a quantitative

measure evaluating how well your algorithm
models your dataset

• Minimizing the loss function means that the
model output reproduces the label better

18

Signal or
Background

(batch_size, 1)

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Boltzmann’s Constant

The number of real
microstates corresponding to

the gas's macrostate

H = ∑
i

pi log
1
pi

= − ∑
i

pi log pi

Probability of state i

Optimal coding length
The number of states in state assuming

all states have equal probability
i

BOLTZMANN ENTROPY INFORMATION ENTROPY

Theory

19

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Binary entropy: H(x) = p log
1
p

− (1 − p)log
1

1 − p

Theory

20

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Binary entropy: H(x) = p log
1
p

− (1 − p)log
1

1 − p

Theory

Suppose we are tossing a fair coin:
• That is, the probability of head (H) and tail (T) are equal

•

Suppose we have an unfair coin where

•

H(X) =
1
2

log
1

1/2
+

1
2

log
1

1/2
= log2 ≈ 0.6931

P(Head) = 0.8 :

H(X) = 0.8log
1

0.8
+ 0.2log

1
0.2

≈ 0.5

20

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Binary entropy: H(x) = p log
1
p

− (1 − p)log
1

1 − p

Theory

Concept
Information entropy is the average amount of surprise we measure

• For a fair coin, it is hard to predict the outcome of next toss, so
the average surprisal is high and thus high entropy

• For a unfair coin, the next outcome is likely to be a head, so the
average surprisal is low and thus low entropy

Suppose we are tossing a fair coin:
• That is, the probability of head (H) and tail (T) are equal

•

Suppose we have an unfair coin where

•

H(X) =
1
2

log
1

1/2
+

1
2

log
1

1/2
= log2 ≈ 0.6931

P(Head) = 0.8 :

H(X) = 0.8log
1

0.8
+ 0.2log

1
0.2

≈ 0.5

20

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

• Suppose we have a classification task to separate neutrino signals from backgrounds

• The ground truth distribution follows the distribution of labels

• On the other hand, we build up a neural network, which analyze every single waveform to
produce an output distribution

p(X)

q(X)

Theory
Cross Entropy is calculated over two distributions and : H(p, q) p(X) q(X)

H(p, q) = ∑ p(X)log
1

q(X)

21

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

• Suppose we have a classification task to separate neutrino signals from backgrounds

• The ground truth distribution follows the distribution of labels

• On the other hand, we build up a neural network, which analyze every single waveform to
produce an output distribution

p(X)

q(X)

Theory
Cross Entropy is calculated over two distributions and :
H(p, q) p(X) q(X)

H(p, q) = ∑ p(X)log
1

q(X)

Concept Concept
Binary Cross Entropy: label is either 1 or 0 Cross Entropy: label contains n classes

H = − [p ⋅ log(q) + (1 − p) ⋅ log(1 − q)] H = − ∑ ⃗p ⋅ log(⃗q) ⃗p = {1,0,0...0}
21

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Information Entropy measures the average amount of surprise

22

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Cross Entropy measure the average amount of surprise from network output distribution ,
given that the ground truth distribution follows

q(X)
p(X)

Information Entropy measures the average amount of surprise

22

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Cross Entropy measure the average amount of surprise from network output distribution ,
given that the ground truth distribution follows

q(X)
p(X)

Information Entropy measures the average amount of surprise

22

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Cross Entropy measure the average amount of surprise from network output distribution ,
given that the ground truth distribution follows

q(X)
p(X)

Cross Entropy Loss: Minimize Cross Entropy is identical to minimizing the surprise of NN output
with respect to the ground truth label

• When ,

• When ,

Lower Cross Entropy loss means better separation between neutrino signal and background

p(Waveform) = Neutrino q(Waveform) Neutrino

p(Waveform) = Background q(Waveform) Background

Concept

Information Entropy measures the average amount of surprise

22

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Binary Classification 1
Task Layer: NNLayer(32, 1) → One float point No. between [-inf, inf]

• After training, it can be onsidered as a “classification score”:

• Higher score means the answer is more likely “yes”

• Lower score means the answer is more likely “no”

• A threshold is need to distinguish “yes” from “no”

σ: torch.sigmoid(x)

• Sigmoid function maps input from [-inf, inf] to [0,1]

Loss Function: torch.nn.BCELoss()

• Input: has to be a number between [0,1]

• Target: has to be either 0 or 1, cannot be other number

σ(x) = 1/(1 + ex)

Concept

Task Module
Task Layer Loss Function

NNLayer σ L

Binary Classification 2
Task Layer: NNLayer(32, 1) → One float point No. between [-inf, inf]

After training, it can be onsidered as a “classification score”:

• Higher score means the answer is more likely “yes”

• Lower score means the answer is more likely “no”

• A threshold is need to distinguish “yes” from “no”

σ: None

Loss Function: torch.nn.BCEWithLogitsLoss()

• Input: any range between [-inf, inf]

• Target: has to be either 0 or 1, cannot be other number

Concept

23

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Task Module
Task Layer Loss Function

NNLayer σ L

Binary Classification 3
Task Layer: NNLayer(32, 2) → two float point No. between [-inf, inf]

• After training, it can be considered as a “classification decision”:

• Assign meaning to the two numbers (1st - yes, 2nd - no)

• The larger number of the two represents the one we select

• No threshold needed

σ: None

Loss Function: torch.nn.CrossEntropyLoss()

• Input: array of size 2 with two number between [-inf, inf]

• Target: the array indices of correct choice

Concept
Multiclass Classification
Task Layer: NNLayer(32, n) → n float point No. between [-inf, inf]

• After training, it can be considered as a “classification decision”

• Assign meaning to the each numbers (1st - C1, 2nd - C2, 3rd - C3, ……..)

• The largest number represents the one we select

• No threshold needed

σ: None

Loss Function: torch.nn.CrossEntropyLoss()

• Input: array of size n with two number between [-inf, inf]

• Target: the array indices of correct choice

Concept

24

Task Module
Task Layer Loss Function

NNLayer σ L

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Regression 1
Task Layer: NNLayer(32, 1) → One float point No. between [-inf, inf]

σ:

• None if you want to fit a physics quantity like energy

• torch.sigmoid(x) if you want to model a percentage like efficiency

Loss Function: torch.nn.MSELoss()

• for energy reconstruction

• Most commonly used, everywhere differentiable

• Gradient explosion with extreme values

L = (TL_Output − Energy)2

Concept

25

Task Module
Task Layer Loss Function

NNLayer σ L

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Regression 2
Task Layer: NNLayer(32, 1) → One float point No. between [-inf, inf]

σ:

• None if you want to model a physics quantity like energy

• torch.sigmoid(x) if you want to model a percentage like efficiency

Loss Function: torch.nn.L1Loss()

• for energy reconstruction

• Generally more Robust, but not Not everywhere differentiable

• Sometimes replaced with torch.nn.SmoothL1Loss()

L = |TL_Output − Energy |

Concept

26

Code

regressor

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

27

Code

regressor

Task Layer: output one float point
number

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

27

Code

regressor

Task Layer: output one float point
number

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

σ: activation function, None for energy
regression task since energy could be
any values

27

Code

regressor

Task Layer: output one float point
number

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

σ: activation function, None for energy
regression task since energy could be
any values

Initialize model as an regressor object

27

Code

regressor

Task Layer: output one float point
number

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

σ: activation function, None for energy
regression task since energy could be
any values

Initialize model as an regressor object Initialize Loss Function as an
object

27

Code

regressor

Task Layer: output one float point
number

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

σ: activation function, None for energy
regression task since energy could be
any values

Initialize model as an regressor object

Feed waveform through the
regressor object for output

Initialize Loss Function as an
object

27

Code

regressor

Task Layer: output one float point
number

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

σ: activation function, None for energy
regression task since energy could be
any values

Initialize model as an regressor object

Feed waveform through the
regressor object for output

Initialize Loss Function as an
object

Calculate regression loss between
regressor output and true energy

27

Code

regressor

Task Layer: output one float point
number

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

σ: activation function, None for energy
regression task since energy could be
any values

Initialize model as an regressor object

Feed waveform through the
regressor object for output

Initialize Loss Function as an
object

Calculate regression loss between
regressor output and true energy

Replace Task Layer, σ, and
Loss Function using the

previously-provided concept
templates to achieve different

tasks!

27

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

• Training of neural network is a gradient descent optimization
process:

• To find , we calculate the gradient

• Moving in the opposite direction of gradient:

• is the learning rate of gradient descent

• Mainstream machine learning optimizers Adam, AdaGrad,
RMSprop are first order optimization algorithms that only
utilize gradient

• There are second order optimization algorithms which utilizes
the Hessian matrix to avoid poorly conditioned probability space

•

argmax
x

f(x) ∇x f(x)

x x′ = x − γ∇x f(x)

γ

f(x(0) − γg) = f(x(0)) − γgTg +
1
2

γ2gTHg

Concept

28

Expression of Neural Network:

• One Layer:

• Two Layer:

• are the weight matrices of the neuron, their
values change during the training

• is also defined as the kernel of neural network

̂y = σ(αT
m ⃗xi + α0m)

̂y = σ2(βT
k σ(αT

m ⃗xi + α0m) + β0k)

(αT
m, βT

k) (mth, kth)

(αT
m, βT

k)

σ

Non-linear Activation

Neuron

Theory

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Training NN = Optimizing kernel parameters with respect to the loss function

• Calculating the gradient is the key steps

However, the gradient is supposed to be calculated on all input data simultaneously

As we increase the size of training data, this becomes computationally impossible

(αT
m, βT

k)

∇α,βL(x, y |α, β)

29

Expression of Neural Network:

• One Layer:

• Two Layer:

• are the weight matrices of the neuron, their
values change during the training

• is also defined as the kernel of neural network

̂y = σ(αT
m ⃗xi + α0m)

̂y = σ2(βT
k σ(αT

m ⃗xi + α0m) + β0k)

(αT
m, βT

k) (mth, kth)

(αT
m, βT

k)

σ

Non-linear Activation

Neuron

Theory

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Stochastic Gradient Descent (SGD):Concept
• This will reproduce the effect of training using all

data simultaneously

• SGD is possible because gradient is an

expectation

• Stochastic: breaks the training data into batches, each batch is
randomly sampled from the training dataset

• Size of batch is an important hyperparameter of NN model

• is updated in a step-wise manner by sequentially
feeding each batch into the model
(αT

m, βT
k)

30

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Input ⃗x NN(⃗x |αT
m, βT

k) Prediction ̂y

Loss L(̂y, y)Caclulate Gradient on (αT
m, βT

k)

Forward Pass

Backward Pass
Update Kernel (αT

m, βT
k)

Forward Pass:

• produce from input and kernel

Backward Pass:

• Calculate loss

• Calculate the gradient on kernel using back propagation

• Update kernel by gradient descent

̂y ⃗x (αT
m, βT

k)

L(̂y, y)

Concept

31

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

32

y = fL(…f2(f1(x))…)

f(w) = sin(y)
y = w + log(w)

d
dw

f(w) = d
dy

sin(y) ⋅ d
dw

y

d
dw

f(w) = d
dy

sin(y) ⋅ d
dw

y

d
dw

f(w) = d
dy

sin(y) ⋅ d
dw

y

∂y
∂w(L−1) = ∂y

∂x(L)

y

xL

fL

xL−1

fL−1

xL−2

fL−2

⋮

∂y
∂x(L−1) = ∂fL(xL)

∂xL

∂y
∂x(L−2) = ∂y

∂x(L−1) ⋅ ∂fL−1(xL−1)
∂XL

∂y
∂x(L−3) = ∂y

∂x(L−2) ⋅ ∂σ(xL−2)
∂XL

y = fL(xL)
xL = fL−1(xL−1)

⋮
x1 = f1(x)

We want to compute for all
∂y
∂xl

l ∈ {1,…, L}

At each step we can reuse the
computation of the previous step!

32

y = fL(…f2(f1(x))…)

f(w) = sin(y)
y = w + log(w)

d
dw

f(w) = d
dy

sin(y) ⋅ d
dw

y

d
dw

f(w) = d
dy

sin(y) ⋅ d
dw

y

d
dw

f(w) = d
dy

sin(y) ⋅ d
dw

y

∂y
∂w(L−1) = ∂y

∂x(L)

y

xL

fL

xL−1

fL−1

xL−2

fL−2

⋮

∂y
∂x(L−1) = ∂fL(xL)

∂xL

∂y
∂x(L−2) = ∂y

∂x(L−1) ⋅ ∂fL−1(xL−1)
∂XL

∂y
∂x(L−3) = ∂y

∂x(L−2) ⋅ ∂σ(xL−2)
∂XL

y = fL(xL)
xL = fL−1(xL−1)

⋮
x1 = f1(x)

We want to compute for all
∂y
∂xl

l ∈ {1,…, L}

At each step we can reuse the
computation of the previous step!

y = fL(. . . f2(f1(x)))

y = fL(xL)
XL = fL−1(xL−1)

…

Treating as a multilayer complex function,
we can use chain rule to calculate its derivative:

NN(⃗x |αT
m, βT

k)

X1 = f1(x1)

We wan to compute for all
∂y
∂xl

l ∈ {1,....,L}

32

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

∂y
∂xL

∂y
∂xL−1

=
∂y
∂xL

∂xL

∂xL−1

∂y
∂xL−2

=
∂y

∂xL−1

∂xL−1

∂xL−2

∂y
∂xL−3

=
∂y

∂xL−2

∂xL−2

∂xL−3

32

y = fL(…f2(f1(x))…)

f(w) = sin(y)
y = w + log(w)

d
dw

f(w) = d
dy

sin(y) ⋅ d
dw

y

d
dw

f(w) = d
dy

sin(y) ⋅ d
dw

y

d
dw

f(w) = d
dy

sin(y) ⋅ d
dw

y

∂y
∂w(L−1) = ∂y

∂x(L)

y

xL

fL

xL−1

fL−1

xL−2

fL−2

⋮

∂y
∂x(L−1) = ∂fL(xL)

∂xL

∂y
∂x(L−2) = ∂y

∂x(L−1) ⋅ ∂fL−1(xL−1)
∂XL

∂y
∂x(L−3) = ∂y

∂x(L−2) ⋅ ∂σ(xL−2)
∂XL

y = fL(xL)
xL = fL−1(xL−1)

⋮
x1 = f1(x)

We want to compute for all
∂y
∂xl

l ∈ {1,…, L}

At each step we can reuse the
computation of the previous step!

32

y = fL(…f2(f1(x))…)

f(w) = sin(y)
y = w + log(w)

d
dw

f(w) = d
dy

sin(y) ⋅ d
dw

y

d
dw

f(w) = d
dy

sin(y) ⋅ d
dw

y

d
dw

f(w) = d
dy

sin(y) ⋅ d
dw

y

∂y
∂w(L−1) = ∂y

∂x(L)

y

xL

fL

xL−1

fL−1

xL−2

fL−2

⋮

∂y
∂x(L−1) = ∂fL(xL)

∂xL

∂y
∂x(L−2) = ∂y

∂x(L−1) ⋅ ∂fL−1(xL−1)
∂XL

∂y
∂x(L−3) = ∂y

∂x(L−2) ⋅ ∂σ(xL−2)
∂XL

y = fL(xL)
xL = fL−1(xL−1)

⋮
x1 = f1(x)

We want to compute for all
∂y
∂xl

l ∈ {1,…, L}

At each step we can reuse the
computation of the previous step!

y = fL(. . . f2(f1(x)))

y = fL(xL)
XL = fL−1(xL−1)

…

Treating as a multilayer complex function,
we can use chain rule to calculate its derivative:

NN(⃗x |αT
m, βT

k)

X1 = f1(x1)

We wan to compute for all
∂y
∂xl

l ∈ {1,....,L}

32

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

∂y
∂xL

∂y
∂xL−1

=
∂y
∂xL

∂xL

∂xL−1

∂y
∂xL−2

=
∂y

∂xL−1

∂xL−1

∂xL−2

∂y
∂xL−3

=
∂y

∂xL−2

∂xL−2

∂xL−3

32

y = fL(…f2(f1(x))…)

f(w) = sin(y)
y = w + log(w)

d
dw

f(w) = d
dy

sin(y) ⋅ d
dw

y

d
dw

f(w) = d
dy

sin(y) ⋅ d
dw

y

d
dw

f(w) = d
dy

sin(y) ⋅ d
dw

y

∂y
∂w(L−1) = ∂y

∂x(L)

y

xL

fL

xL−1

fL−1

xL−2

fL−2

⋮

∂y
∂x(L−1) = ∂fL(xL)

∂xL

∂y
∂x(L−2) = ∂y

∂x(L−1) ⋅ ∂fL−1(xL−1)
∂XL

∂y
∂x(L−3) = ∂y

∂x(L−2) ⋅ ∂σ(xL−2)
∂XL

y = fL(xL)
xL = fL−1(xL−1)

⋮
x1 = f1(x)

We want to compute for all
∂y
∂xl

l ∈ {1,…, L}

At each step we can reuse the
computation of the previous step!

32

y = fL(…f2(f1(x))…)

f(w) = sin(y)
y = w + log(w)

d
dw

f(w) = d
dy

sin(y) ⋅ d
dw

y

d
dw

f(w) = d
dy

sin(y) ⋅ d
dw

y

d
dw

f(w) = d
dy

sin(y) ⋅ d
dw

y

∂y
∂w(L−1) = ∂y

∂x(L)

y

xL

fL

xL−1

fL−1

xL−2

fL−2

⋮

∂y
∂x(L−1) = ∂fL(xL)

∂xL

∂y
∂x(L−2) = ∂y

∂x(L−1) ⋅ ∂fL−1(xL−1)
∂XL

∂y
∂x(L−3) = ∂y

∂x(L−2) ⋅ ∂σ(xL−2)
∂XL

y = fL(xL)
xL = fL−1(xL−1)

⋮
x1 = f1(x)

We want to compute for all
∂y
∂xl

l ∈ {1,…, L}

At each step we can reuse the
computation of the previous step!

y = fL(. . . f2(f1(x)))

y = fL(xL)
XL = fL−1(xL−1)

…

Treating as a multilayer complex function,
we can use chain rule to calculate its derivative:

NN(⃗x |αT
m, βT

k)

X1 = f1(x1)

We wan to compute for all
∂y
∂xl

l ∈ {1,....,L}

32

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

∂y
∂xL

∂y
∂xL−1

=
∂y
∂xL

∂xL

∂xL−1

∂y
∂xL−2

=
∂y

∂xL−1

∂xL−1

∂xL−2

∂y
∂xL−3

=
∂y

∂xL−2

∂xL−2

∂xL−3

32

y = fL(…f2(f1(x))…)

f(w) = sin(y)
y = w + log(w)

d
dw

f(w) = d
dy

sin(y) ⋅ d
dw

y

d
dw

f(w) = d
dy

sin(y) ⋅ d
dw

y

d
dw

f(w) = d
dy

sin(y) ⋅ d
dw

y

∂y
∂w(L−1) = ∂y

∂x(L)

y

xL

fL

xL−1

fL−1

xL−2

fL−2

⋮

∂y
∂x(L−1) = ∂fL(xL)

∂xL

∂y
∂x(L−2) = ∂y

∂x(L−1) ⋅ ∂fL−1(xL−1)
∂XL

∂y
∂x(L−3) = ∂y

∂x(L−2) ⋅ ∂σ(xL−2)
∂XL

y = fL(xL)
xL = fL−1(xL−1)

⋮
x1 = f1(x)

We want to compute for all
∂y
∂xl

l ∈ {1,…, L}

At each step we can reuse the
computation of the previous step!

32

y = fL(…f2(f1(x))…)

f(w) = sin(y)
y = w + log(w)

d
dw

f(w) = d
dy

sin(y) ⋅ d
dw

y

d
dw

f(w) = d
dy

sin(y) ⋅ d
dw

y

d
dw

f(w) = d
dy

sin(y) ⋅ d
dw

y

∂y
∂w(L−1) = ∂y

∂x(L)

y

xL

fL

xL−1

fL−1

xL−2

fL−2

⋮

∂y
∂x(L−1) = ∂fL(xL)

∂xL

∂y
∂x(L−2) = ∂y

∂x(L−1) ⋅ ∂fL−1(xL−1)
∂XL

∂y
∂x(L−3) = ∂y

∂x(L−2) ⋅ ∂σ(xL−2)
∂XL

y = fL(xL)
xL = fL−1(xL−1)

⋮
x1 = f1(x)

We want to compute for all
∂y
∂xl

l ∈ {1,…, L}

At each step we can reuse the
computation of the previous step!

y = fL(. . . f2(f1(x)))

y = fL(xL)
XL = fL−1(xL−1)

…

Treating as a multilayer complex function,
we can use chain rule to calculate its derivative:

NN(⃗x |αT
m, βT

k)

X1 = f1(x1)

We wan to compute for all
∂y
∂xl

l ∈ {1,....,L}

32

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

∂y
∂xL

∂y
∂xL−1

=
∂y
∂xL

∂xL

∂xL−1

∂y
∂xL−2

=
∂y

∂xL−1

∂xL−1

∂xL−2

∂y
∂xL−3

=
∂y

∂xL−2

∂xL−2

∂xL−3

32

y = fL(…f2(f1(x))…)

f(w) = sin(y)
y = w + log(w)

d
dw

f(w) = d
dy

sin(y) ⋅ d
dw

y

d
dw

f(w) = d
dy

sin(y) ⋅ d
dw

y

d
dw

f(w) = d
dy

sin(y) ⋅ d
dw

y

∂y
∂w(L−1) = ∂y

∂x(L)

y

xL

fL

xL−1

fL−1

xL−2

fL−2

⋮

∂y
∂x(L−1) = ∂fL(xL)

∂xL

∂y
∂x(L−2) = ∂y

∂x(L−1) ⋅ ∂fL−1(xL−1)
∂XL

∂y
∂x(L−3) = ∂y

∂x(L−2) ⋅ ∂σ(xL−2)
∂XL

y = fL(xL)
xL = fL−1(xL−1)

⋮
x1 = f1(x)

We want to compute for all
∂y
∂xl

l ∈ {1,…, L}

At each step we can reuse the
computation of the previous step!

32

y = fL(…f2(f1(x))…)

f(w) = sin(y)
y = w + log(w)

d
dw

f(w) = d
dy

sin(y) ⋅ d
dw

y

d
dw

f(w) = d
dy

sin(y) ⋅ d
dw

y

d
dw

f(w) = d
dy

sin(y) ⋅ d
dw

y

∂y
∂w(L−1) = ∂y

∂x(L)

y

xL

fL

xL−1

fL−1

xL−2

fL−2

⋮

∂y
∂x(L−1) = ∂fL(xL)

∂xL

∂y
∂x(L−2) = ∂y

∂x(L−1) ⋅ ∂fL−1(xL−1)
∂XL

∂y
∂x(L−3) = ∂y

∂x(L−2) ⋅ ∂σ(xL−2)
∂XL

y = fL(xL)
xL = fL−1(xL−1)

⋮
x1 = f1(x)

We want to compute for all
∂y
∂xl

l ∈ {1,…, L}

At each step we can reuse the
computation of the previous step!

y = fL(. . . f2(f1(x)))

y = fL(xL)
XL = fL−1(xL−1)

…

Treating as a multilayer complex function,
we can use chain rule to calculate its derivative:

NN(⃗x |αT
m, βT

k)

X1 = f1(x1)

We wan to compute for all
∂y
∂xl

l ∈ {1,....,L}

32

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

32

y = fL(…f2(f1(x))…)

f(w) = sin(y)
y = w + log(w)

d
dw

f(w) = d
dy

sin(y) ⋅ d
dw

y

d
dw

f(w) = d
dy

sin(y) ⋅ d
dw

y

d
dw

f(w) = d
dy

sin(y) ⋅ d
dw

y

∂y
∂w(L−1) = ∂y

∂x(L)

y

xL

fL

xL−1

fL−1

xL−2

fL−2

⋮

∂y
∂x(L−1) = ∂fL(xL)

∂xL

∂y
∂x(L−2) = ∂y

∂x(L−1) ⋅ ∂fL−1(xL−1)
∂XL

∂y
∂x(L−3) = ∂y

∂x(L−2) ⋅ ∂σ(xL−2)
∂XL

y = fL(xL)
xL = fL−1(xL−1)

⋮
x1 = f1(x)

We want to compute for all
∂y
∂xl

l ∈ {1,…, L}

At each step we can reuse the
computation of the previous step!

∂y
∂xL

∂y
∂xL−1

=
∂y
∂xL

∂xL

∂xL−1

∂y
∂xL−2

=
∂y

∂xL−1

∂xL−1

∂xL−2

∂y
∂xL−3

=
∂y

∂xL−2

∂xL−2

∂xL−3

32

y = fL(…f2(f1(x))…)

f(w) = sin(y)
y = w + log(w)

d
dw

f(w) = d
dy

sin(y) ⋅ d
dw

y

d
dw

f(w) = d
dy

sin(y) ⋅ d
dw

y

d
dw

f(w) = d
dy

sin(y) ⋅ d
dw

y

∂y
∂w(L−1) = ∂y

∂x(L)

y

xL

fL

xL−1

fL−1

xL−2

fL−2

⋮

∂y
∂x(L−1) = ∂fL(xL)

∂xL

∂y
∂x(L−2) = ∂y

∂x(L−1) ⋅ ∂fL−1(xL−1)
∂XL

∂y
∂x(L−3) = ∂y

∂x(L−2) ⋅ ∂σ(xL−2)
∂XL

y = fL(xL)
xL = fL−1(xL−1)

⋮
x1 = f1(x)

We want to compute for all
∂y
∂xl

l ∈ {1,…, L}

At each step we can reuse the
computation of the previous step!

32

y = fL(…f2(f1(x))…)

f(w) = sin(y)
y = w + log(w)

d
dw

f(w) = d
dy

sin(y) ⋅ d
dw

y

d
dw

f(w) = d
dy

sin(y) ⋅ d
dw

y

d
dw

f(w) = d
dy

sin(y) ⋅ d
dw

y

∂y
∂w(L−1) = ∂y

∂x(L)

y

xL

fL

xL−1

fL−1

xL−2

fL−2

⋮

∂y
∂x(L−1) = ∂fL(xL)

∂xL

∂y
∂x(L−2) = ∂y

∂x(L−1) ⋅ ∂fL−1(xL−1)
∂XL

∂y
∂x(L−3) = ∂y

∂x(L−2) ⋅ ∂σ(xL−2)
∂XL

y = fL(xL)
xL = fL−1(xL−1)

⋮
x1 = f1(x)

We want to compute for all
∂y
∂xl

l ∈ {1,…, L}

At each step we can reuse the
computation of the previous step!

y = fL(. . . f2(f1(x)))

y = fL(xL)
XL = fL−1(xL−1)

…

Treating as a multilayer complex function,
we can use chain rule to calculate its derivative:

NN(⃗x |αT
m, βT

k)

X1 = f1(x1)

We wan to compute for all
∂y
∂xl

l ∈ {1,....,L}

32

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

yy = sin(w1 ⋅ x + log(w2 ⋅ x)) + cos(x)

sin

+

log

x w1

cos

w1 ⋅ x

We can use back-propagation to compute the gradients on any computational graph.

Modern deep networks can have a very complex structure!

Concept
A computation graph is a directed graph where on each
node we have an operation.

y = sin(w1x + log(x)) + cos(x)
Modern deep neural networks are also computational
graph! This means can calculate gradient along the graph.

39

!53

implementation

most deep learning software libraries automatically handle this for you

we need to manually implement backpropagation and weight updates

can be difficult for arbitrary, large computation graphs

and many more

just build the computational graph and define the loss33

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

!38

backpropagation

L
x(L)s(L)

W(L)

x(L�1)

TARGET

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@W(L)

rW(L)L ⌘ @L
@W(L)

note is notational convention

depends on the
form of the loss

derivative of the
non-linearity

@

@W(L)
(W(L)|x(L�1)) = x(L�1)|

@

@W(L)
(W(L)|x(L�1)) = x(L�1)|

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@W(L)

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@W(L)

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@W(L)

Theory
Given value of the loss, using
backpropagation equation to calculate
gradient with respect to each weight
kernel parameters

34

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

!39

backpropagation

now let’s go back one more layer…

L
x(L)s(L)

W(L)

x(L�1)

TARGET

s(L�1)x(L�2)

W(L�1)

again we’ll draw the dependency graph:

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@x(L�1)

@x(L�1)

@s(L�1)

@s(L�1)

@W(L�1)

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@x(L�1)

@x(L�1)

@s(L�1)

@s(L�1)

@W(L�1)

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@x(L�1)

@x(L�1)

@s(L�1)

@s(L�1)

@W(L�1)

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@x(L�1)

@x(L�1)

@s(L�1)

@s(L�1)

@W(L�1)

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@x(L�1)

@x(L�1)

@s(L�1)

@s(L�1)

@W(L�1)

@L
@W(L�1)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@x(L�1)

@x(L�1)

@s(L�1)

@s(L�1)

@W(L�1)
35

Code

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

36

Code

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Set up variables:

• Model: classifier

• Loss Function: criterion

• Optimizer: can use SGD, but we

recommend torch.optim.Adam()]

36

Code

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Set up variables:

• Model: classifier

• Loss Function: criterion

• Optimizer: can use SGD, but we

recommend torch.optim.Adam()]

Epoch: number of iterations to train
through the same dataset

train_loader: iterate through each
batches within the dataset

36

Code

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Set up variables:

• Model: classifier

• Loss Function: criterion

• Optimizer: can use SGD, but we

recommend torch.optim.Adam()]

Epoch: number of iterations to train
through the same dataset

train_loader: iterate through each
batches within the dataset

36

Forward pass: feed data
through the neural network
model and calculate loss value
(already discussed)

Code

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Set up variables:

• Model: classifier

• Loss Function: criterion

• Optimizer: can use SGD, but we

recommend torch.optim.Adam()]

Epoch: number of iterations to train
through the same dataset

train_loader: iterate through each
batches within the dataset

Backpropagation: this single line of
code does everything we discussed

from sides 28-35!

36

Forward pass: feed data
through the neural network
model and calculate loss value
(already discussed)

Code

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Set up variables:

• Model: classifier

• Loss Function: criterion

• Optimizer: can use SGD, but we

recommend torch.optim.Adam()]

Epoch: number of iterations to train
through the same dataset

train_loader: iterate through each
batches within the dataset

Backpropagation: this single line of
code does everything we discussed

from sides 28-35!

36

Forward pass: feed data
through the neural network
model and calculate loss value
(already discussed)

This line updates model
parameters according to

calculated gradients

Code

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Set up variables:

• Model: classifier

• Loss Function: criterion

• Optimizer: can use SGD, but we

recommend torch.optim.Adam()]

Epoch: number of iterations to train
through the same dataset

train_loader: iterate through each
batches within the dataset

Backpropagation: this single line of
code does everything we discussed

from sides 28-35!

36

Forward pass: feed data
through the neural network
model and calculate loss value
(already discussed)

This line updates model
parameters according to

calculated gradientsThis line reset the gradient to 0 at the
end of current batch, so that we are
ready to train the next batch of data

Training
Machine

Underfitting Good fit! Overfitting

a) b) c)

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

37

Concept
Underfitting: occurs when model cannot adequately
capture the underlying structure of the data

Overfitting: model that corresponds too closely/exactly
to the training data and fail to generalize to validation data

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201760

Regularization: Dropout
In each forward pass, randomly set some neurons to zero
Probability of dropping is a hyperparameter; 0.5 is common

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

38

Concept
Dropout: during training, randomly set some neurons to zero which forces the NN not to become
solely dependent on one neuron.

Code torch.nn.Linear(1000,512),
torch.nn.ReLU(),

torch.nn.Dropout(),

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201760

Regularization: Dropout
In each forward pass, randomly set some neurons to zero
Probability of dropping is a hyperparameter; 0.5 is common

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

39

Time Series Data
(BATCH_SIZE, 1000)

Binary Classification 1
Task Layer: NNLayer(32, 1) → One float point No.

• After training, it can be onsidered as a “classification score”:

• Higher score means the answer is more likely “yes”

• Lower score means the answer is more likely “no”

• A threshold is need to distinguish “yes” from “no”

σ: torch.sigmoid(x)
Loss Function: torch.nn.BCELoss()

Concept

NNLayer(1000,512) → σ
→ NNLayer(512, 256) → σ
→ NNLayer(256, 32) → σ

Concept

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

39

Time Series Data
(BATCH_SIZE, 1000)

Binary Classification 1
Task Layer: NNLayer(32, 1) → One float point No.

• After training, it can be onsidered as a “classification score”:

• Higher score means the answer is more likely “yes”

• Lower score means the answer is more likely “no”

• A threshold is need to distinguish “yes” from “no”

σ: torch.sigmoid(x)
Loss Function: torch.nn.BCELoss()

Concept

NNLayer(1000,512) → σ
→ NNLayer(512, 256) → σ
→ NNLayer(256, 32) → σ

Feature Extractor Network
Take raw data as the input and output

a low-dimensional vector

Concept

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

40

Setup: Classifying Majorana Demonstrator Waveforms

• Signal/positive: single-site waveform

• Backgrounds/negative: multi-site waveform

• : Classification score produced by training the NN

• Cutting Threshold: set at to at 0.5 to define our yes/no answer:

• : event is a signal

• : event is a background

λ

λ > 0.5

λ ≤ 0.5

psd_label_avse:
True Signal

psd_label_avse:
True Background

Classified As Signal
True Positive (TP) False Positive (FP)

Classified as bkg
False Negative (FN) True Negative (TN)

____________ means this event is _______ly classified as ___________.

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

40

Setup: Classifying Majorana Demonstrator Waveforms

• Signal/positive: single-site waveform

• Backgrounds/negative: multi-site waveform

• : Classification score produced by training the NN

• Cutting Threshold: set at to at 0.5 to define our yes/no answer:

• : event is a signal

• : event is a background

λ

λ > 0.5

λ ≤ 0.5

psd_label_avse:
True Signal

psd_label_avse:
True Background

Classified As Signal
True Positive (TP) False Positive (FP)

Classified as bkg
False Negative (FN) True Negative (TN)

____________ means this event is _______ly classified as ___________. True Positive Tru Positive

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

40

Setup: Classifying Majorana Demonstrator Waveforms

• Signal/positive: single-site waveform

• Backgrounds/negative: multi-site waveform

• : Classification score produced by training the NN

• Cutting Threshold: set at to at 0.5 to define our yes/no answer:

• : event is a signal

• : event is a background

λ

λ > 0.5

λ ≤ 0.5

psd_label_avse:
True Signal

psd_label_avse:
True Background

Classified As Signal
True Positive (TP) False Positive (FP)

Classified as bkg
False Negative (FN) True Negative (TN)

____________ means this event is _______ly classified as ___________. True Positive Tru Positive

False Positive False Positive

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

40

Setup: Classifying Majorana Demonstrator Waveforms

• Signal/positive: single-site waveform

• Backgrounds/negative: multi-site waveform

• : Classification score produced by training the NN

• Cutting Threshold: set at to at 0.5 to define our yes/no answer:

• : event is a signal

• : event is a background

λ

λ > 0.5

λ ≤ 0.5

psd_label_avse:
True Signal

psd_label_avse:
True Background

Classified As Signal
True Positive (TP) False Positive (FP)

Classified as bkg
False Negative (FN) True Negative (TN)

____________ means this event is _______ly classified as ___________. True Positive Tru Positive

False Positive False Positive

True Negative Tru Negative

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

40

Setup: Classifying Majorana Demonstrator Waveforms

• Signal/positive: single-site waveform

• Backgrounds/negative: multi-site waveform

• : Classification score produced by training the NN

• Cutting Threshold: set at to at 0.5 to define our yes/no answer:

• : event is a signal

• : event is a background

λ

λ > 0.5

λ ≤ 0.5

psd_label_avse:
True Signal

psd_label_avse:
True Background

Classified As Signal
True Positive (TP) False Positive (FP)

Classified as bkg
False Negative (FN) True Negative (TN)

____________ means this event is _______ly classified as ___________. True Positive Tru Positive

False Positive False Positive

True Negative Tru Negative

False Negative False Negative

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

41

Setup: Classifying Majorana Demonstrator Waveforms

• Signal/positive: single-site waveform

• Backgrounds/negative: multi-site waveform

• : Classification score produced by training the NN

• Cutting Threshold: set at to at 0.5 to define our yes/no answer:

• : event is a signal

• : event is a background

λ

λ > 0.5

λ ≤ 0.5

psd_label_avse:
True Signal

psd_label_avse:
True Background

Classified As Signal
True Positive (TP) False Positive (FP)

Classified as bkg
False Negative (FN) True Negative (TN)

True Positive Rate (TPR) = [TP+FN is the total number of signal in the dataset]

False Positive Rate (FPR) = [FP+TN is the total number of backgrounds in the dataset]

TP
TP + FN

FP
FP + TN

Concept

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

42

Setup: Classifying Majorana Demonstrator Waveforms

• Signal/positive: single-site waveform

• Backgrounds/negative: multi-site waveform

• : Classification score produced by training the NN

• Cutting Threshold: set at to at 0.5 to define our yes/no answer:

• : event is a signal

• : event is a background

λ

λ > 0.5

λ ≤ 0.5

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

42

Setup: Classifying Majorana Demonstrator Waveforms

• Signal/positive: single-site waveform

• Backgrounds/negative: multi-site waveform

• : Classification score produced by training the NN

• Cutting Threshold: set at to at 0.5 to define our yes/no answer:

• : event is a signal

• : event is a background

λ

λ > 0.5

λ ≤ 0.5

TP increase

FP decrease

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

42

Setup: Classifying Majorana Demonstrator Waveforms

• Signal/positive: single-site waveform

• Backgrounds/negative: multi-site waveform

• : Classification score produced by training the NN

• Cutting Threshold: set at to at 0.5 to define our yes/no answer:

• : event is a signal

• : event is a background

λ

λ > 0.5

λ ≤ 0.5

TP increase

FP decrease

• Model did not change at all

• simply changing the cutting threshold will result in different
TPR & FPR

• We need a threshold-independent metric to compare
model performance!

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Concept
Receiver Operating Characteristic (ROC) Curve: Evaluate our model at all thresholds possible

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Cutting at -0.1:
• TPR = 100%

• FPR = 100% All ROC curves start at (1,1)

Concept
Receiver Operating Characteristic (ROC) Curve: Evaluate our model at all thresholds possible

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Cutting at -0.1:
• TPR = 100%

• FPR = 100% All ROC curves start at (1,1)

Cutting at 0.2:
• TPR = 87%

• FPR = 24%

Concept
Receiver Operating Characteristic (ROC) Curve: Evaluate our model at all thresholds possible

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Cutting at -0.1:
• TPR = 100%

• FPR = 100% All ROC curves start at (1,1)

Cutting at 0.2:
• TPR = 87%

• FPR = 24%

Cutting at 0.5:
• TPR = 70%

• FPR = 10%

Concept
Receiver Operating Characteristic (ROC) Curve: Evaluate our model at all thresholds possible

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Cutting at -0.1:
• TPR = 100%

• FPR = 100% All ROC curves start at (1,1)

Cutting at 0.2:
• TPR = 87%

• FPR = 24%

Cutting at 0.5:
• TPR = 70%

• FPR = 10%

Cutting at 0.8:
• TPR = 50%

• FPR = 3%

Concept
Receiver Operating Characteristic (ROC) Curve: Evaluate our model at all thresholds possible

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Cutting at -0.1:
• TPR = 100%

• FPR = 100% All ROC curves start at (1,1)

Cutting at 0.2:
• TPR = 87%

• FPR = 24%

Cutting at 0.5:
• TPR = 70%

• FPR = 10%

Cutting at 0.8:
• TPR = 50%

• FPR = 3%

Cutting at 1.1:
• TPR = 0%

• FPR = 0% All ROC curves ends at (0,0)

Concept
Receiver Operating Characteristic (ROC) Curve: Evaluate our model at all thresholds possible

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Perfect ROC Curve
• TPR = 100% at FPR = 0%

• Area under curve = 1

• Every event is classified correctly

Worst ROC Curve
• TPR == FPR

• Area under curve = 0.5

• Classify by tossing a coin

Anti-perfect ROC Curve
• TPR = 0% at FPR = 100%

• Area under curve = 0

• Every event is classified wrong

∀λ : λsig > λbkg λ ∼ Unif(0,1) ∀λ : λsig < λbkg

Concept
The Area Under the Curve (AUC) of ROC curve is equal to the probability that a model will rank

a randomly chosen signal higher than a randomly chosen background

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

45

Time Series Data
(BATCH_SIZE, 1000)

Binary Classification 1
Task Layer: NNLayer(32, 1) → One float point No.

• After training, it can be onsidered as a “classification score”:

• Higher score means the answer is more likely “yes”

• Lower score means the answer is more likely “no”

• A threshold is need to distinguish “yes” from “no”

σ: torch.sigmoid(x)
Loss Function: torch.nn.BCELoss()

Concept

NNLayer(1000,512) → σ
→ NNLayer(512, 256) → σ
→ NNLayer(256, 32) → σ

Concept

Regression 1
Task Layer: NNLayer(32, 1) → One float point No.
between [-inf, inf]

σ:

• None if you want to fit a physics quantity like energy

• torch.sigmoid(x) if you want to model a percentage like
efficiency

Loss Function: torch.nn.MSELoss()

• for energy reconstructionL = (TL_Output − Energy)2

Concept

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

45

Time Series Data
(BATCH_SIZE, 1000)

Binary Classification 1
Task Layer: NNLayer(32, 1) → One float point No.

• After training, it can be onsidered as a “classification score”:

• Higher score means the answer is more likely “yes”

• Lower score means the answer is more likely “no”

• A threshold is need to distinguish “yes” from “no”

σ: torch.sigmoid(x)
Loss Function: torch.nn.BCELoss()

Concept

NNLayer(1000,512) → σ
→ NNLayer(512, 256) → σ
→ NNLayer(256, 32) → σ

Feature Extractor Network
Take raw data as the input and output

a low-dimensional vector

Concept

Regression 1
Task Layer: NNLayer(32, 1) → One float point No.
between [-inf, inf]

σ:

• None if you want to fit a physics quantity like energy

• torch.sigmoid(x) if you want to model a percentage like
efficiency

Loss Function: torch.nn.MSELoss()

• for energy reconstructionL = (TL_Output − Energy)2

Concept

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

• Regression performance can be evaluated the same way as reconstruction result in physics!

• Additionally, the value of MSE loss is a good metric to understand performance.

https://link.springer.com/article/10.1140/epjc/s10052-024-12980-7

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Model Building

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Model Building

1. Majorana Demonstrator Dataset and HPGe Detector

2. PyTorch Dataset Class

3. Data pre-processing: transform your data to remove

unwanted informations

4. Wrap dataset object to create a data loader

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Model Building

1. Majorana Demonstrator Dataset and HPGe Detector

2. PyTorch Dataset Class

3. Data pre-processing: transform your data to remove

unwanted informations

4. Wrap dataset object to create a data loader

1. Neural Network: linear layer and
activation function

2. How to create a simple NN in PyTorch

3. Forward pass

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Model Building

1. Majorana Demonstrator Dataset and HPGe Detector

2. PyTorch Dataset Class

3. Data pre-processing: transform your data to remove

unwanted informations

4. Wrap dataset object to create a data loader

1. Neural Network: linear layer and
activation function

2. How to create a simple NN in PyTorch

3. Forward pass

1. Task Module: Task Layer +
Loss Function

2. Cross Entropy

3. Binary Classification 1-3

4. Multiclass Classification

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Model Building

1. Majorana Demonstrator Dataset and HPGe Detector

2. PyTorch Dataset Class

3. Data pre-processing: transform your data to remove

unwanted informations

4. Wrap dataset object to create a data loader

1. Neural Network: linear layer and
activation function

2. How to create a simple NN in PyTorch

3. Forward pass

1. Task Module: Task Layer +
Loss Function

2. Cross Entropy

3. Binary Classification 1-3

4. Multiclass Classification

MSE Loss, L1 Loss, and Smooth L1
Loss

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Model Building

1. Majorana Demonstrator Dataset and HPGe Detector

2. PyTorch Dataset Class

3. Data pre-processing: transform your data to remove

unwanted informations

4. Wrap dataset object to create a data loader

1. Neural Network: linear layer and
activation function

2. How to create a simple NN in PyTorch

3. Forward pass

1. Task Module: Task Layer +
Loss Function

2. Cross Entropy

3. Binary Classification 1-3

4. Multiclass Classification

MSE Loss, L1 Loss, and Smooth L1
Loss

1. Stochastic Gradient Descent
2. Backward Pass: Computational

graph and Backpropagation

3. PyTorch implementation: one line

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Model Building

1. Majorana Demonstrator Dataset and HPGe Detector

2. PyTorch Dataset Class

3. Data pre-processing: transform your data to remove

unwanted informations

4. Wrap dataset object to create a data loader

1. Neural Network: linear layer and
activation function

2. How to create a simple NN in PyTorch

3. Forward pass

1. Task Module: Task Layer +
Loss Function

2. Cross Entropy

3. Binary Classification 1-3

4. Multiclass Classification

MSE Loss, L1 Loss, and Smooth L1
Loss

1. Stochastic Gradient Descent
2. Backward Pass: Computational

graph and Backpropagation

3. PyTorch implementation: one line

1. Overfitting vs. Underfitting

2. Evaluate binary classication: ROC Analysis
3. Evaluate regression: reconstruction algorithm

Some Useful Links

All lecture materials: Link

Jupyter Notebook Code: Link

Code

Concept
The Practical Machine Learning

https://pire.gemadarc.org/education/school21/#ai

2024 Summer Bootcamp on Deep Learning and Applications
https://ai-bootcamp2024.github.io/

MIT 6.S191 Introduction to Deep Learning
http://introtodeeplearning.com/

Andrew Ng: Deep Learning Specialization
Link

My Website:
https://aobol.github.io/AoboLi/

My Email Addresses:
aol002@ucsd.edu

