Al In a Nutshell: How To Build a Machine Learning Model

Aobo Li Halıcıoğlu Data Science Institute **Department of Physics** UC San Diego

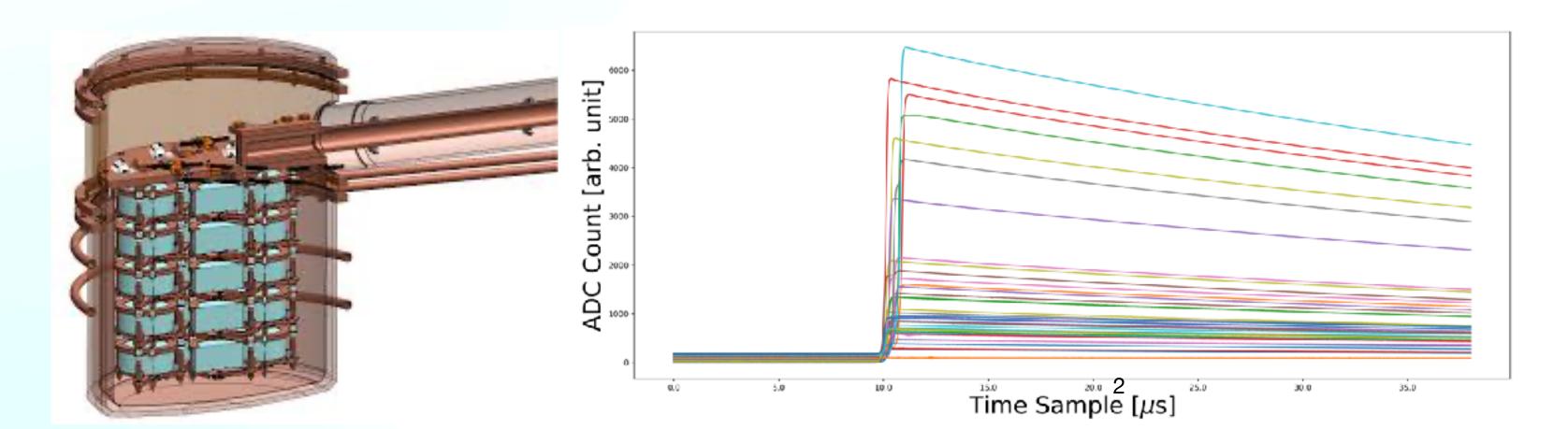
National Nuclear Physics Summer School, 07/22/2024

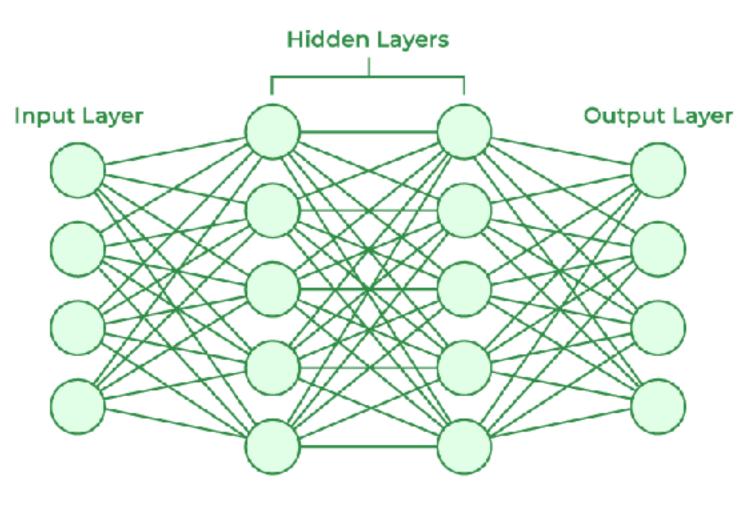
UC San Diego PHYSICS

Course Objectives

1. Understand Machine Learning from O background

- Assuming some background in Python programming
- 2. Solve a nuclear physics problem using real detector data
 - Open time series data from the Majorana Demonstrator experiment
- 3. Building blocks for more advanced models and other experiments
 - Next lecture: connecting dots between AI and NP





Course Outline

1. Data Preprocessing

2. Feature Extraction

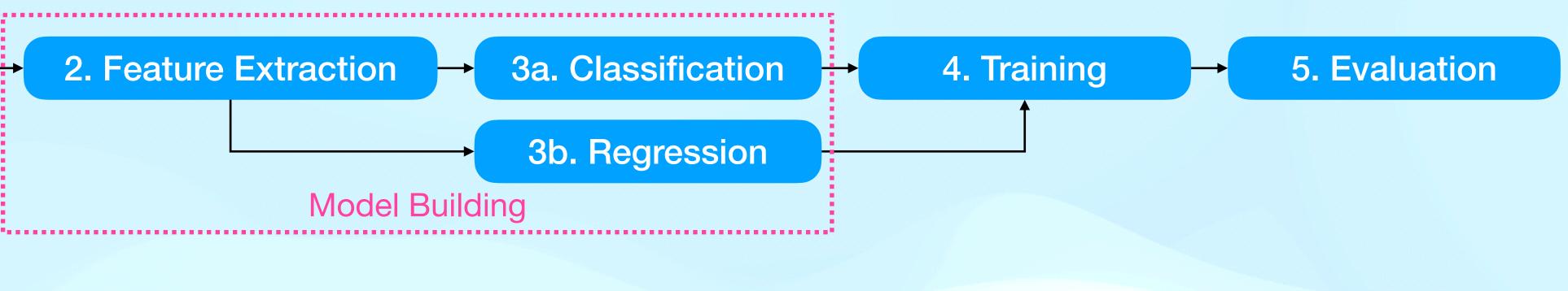
Theory

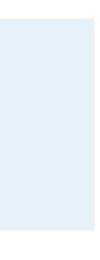
Important equations/theoretical derivations you should understand

O Concept

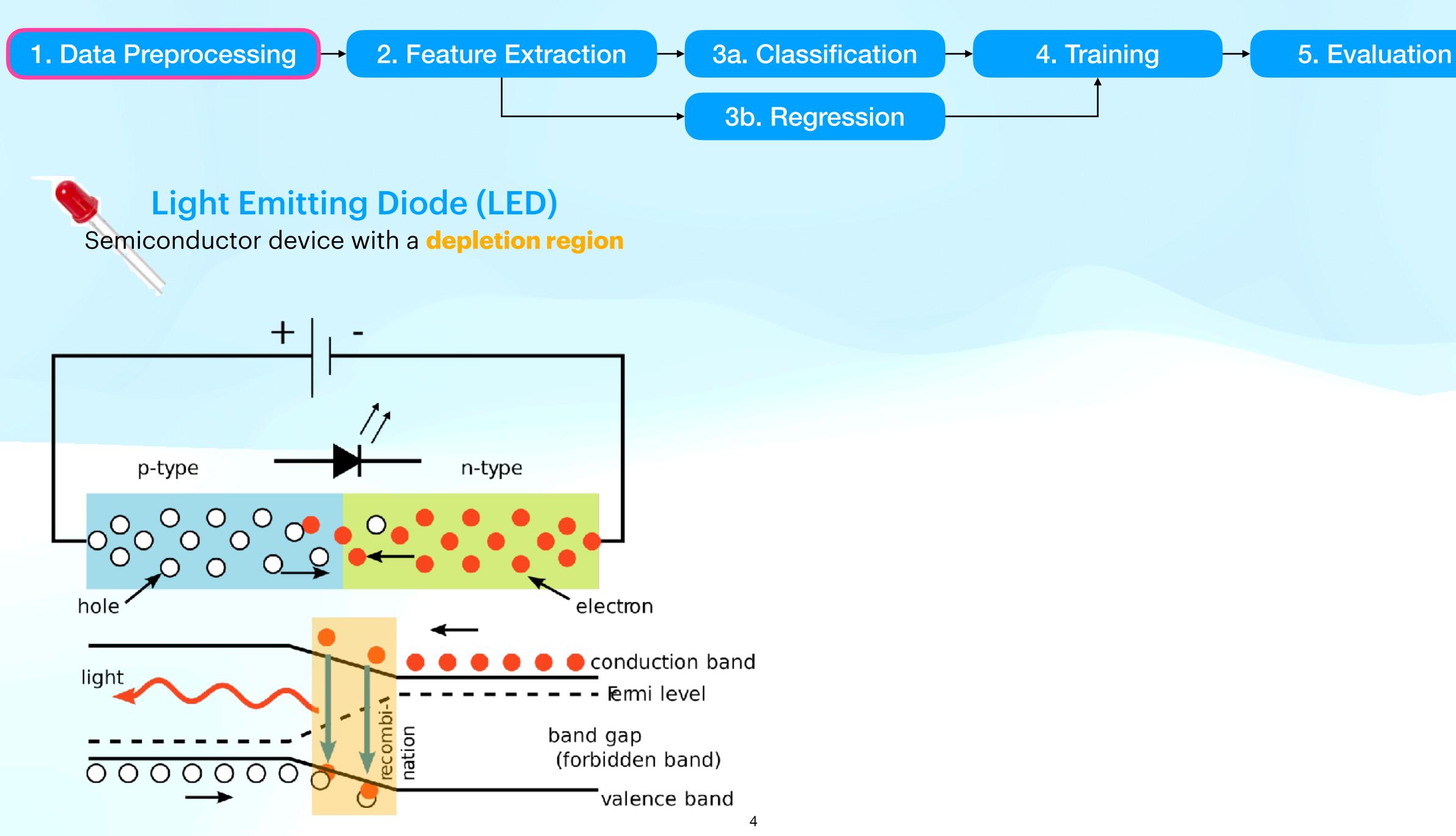
Fundamental concepts that appears everywhere in AI/ML paper and textbook

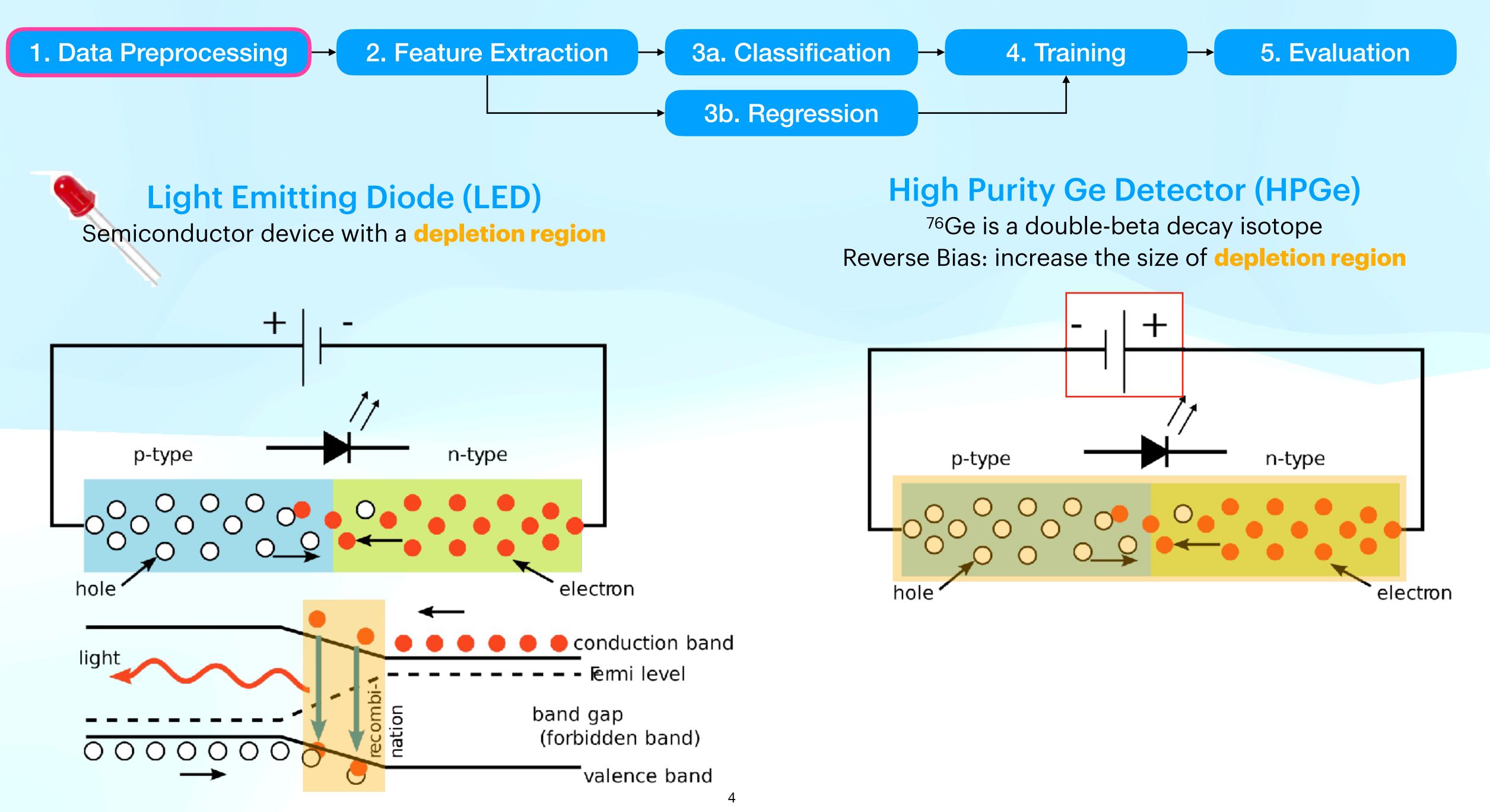
The actual PyTorch implementation, useful for building your own models

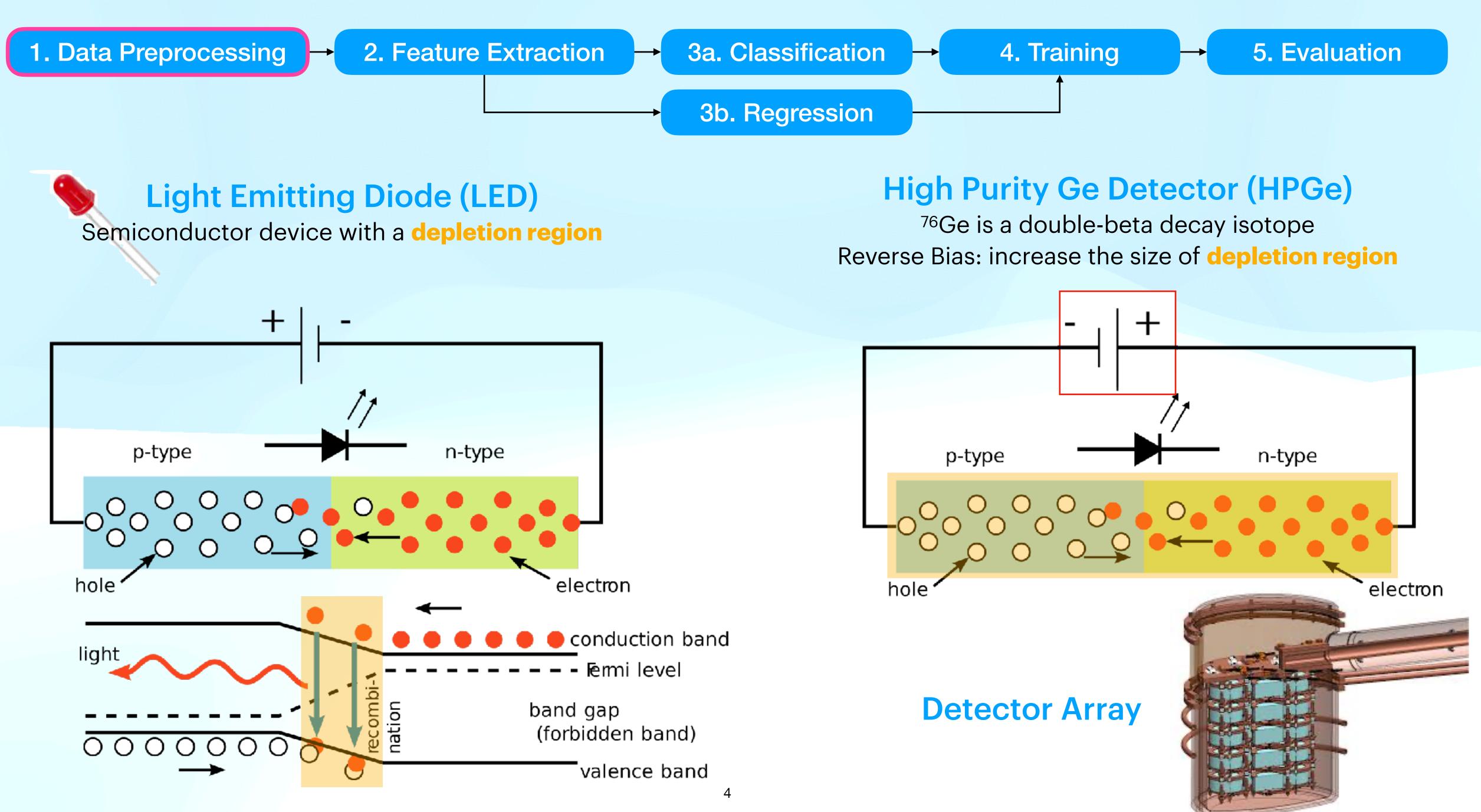


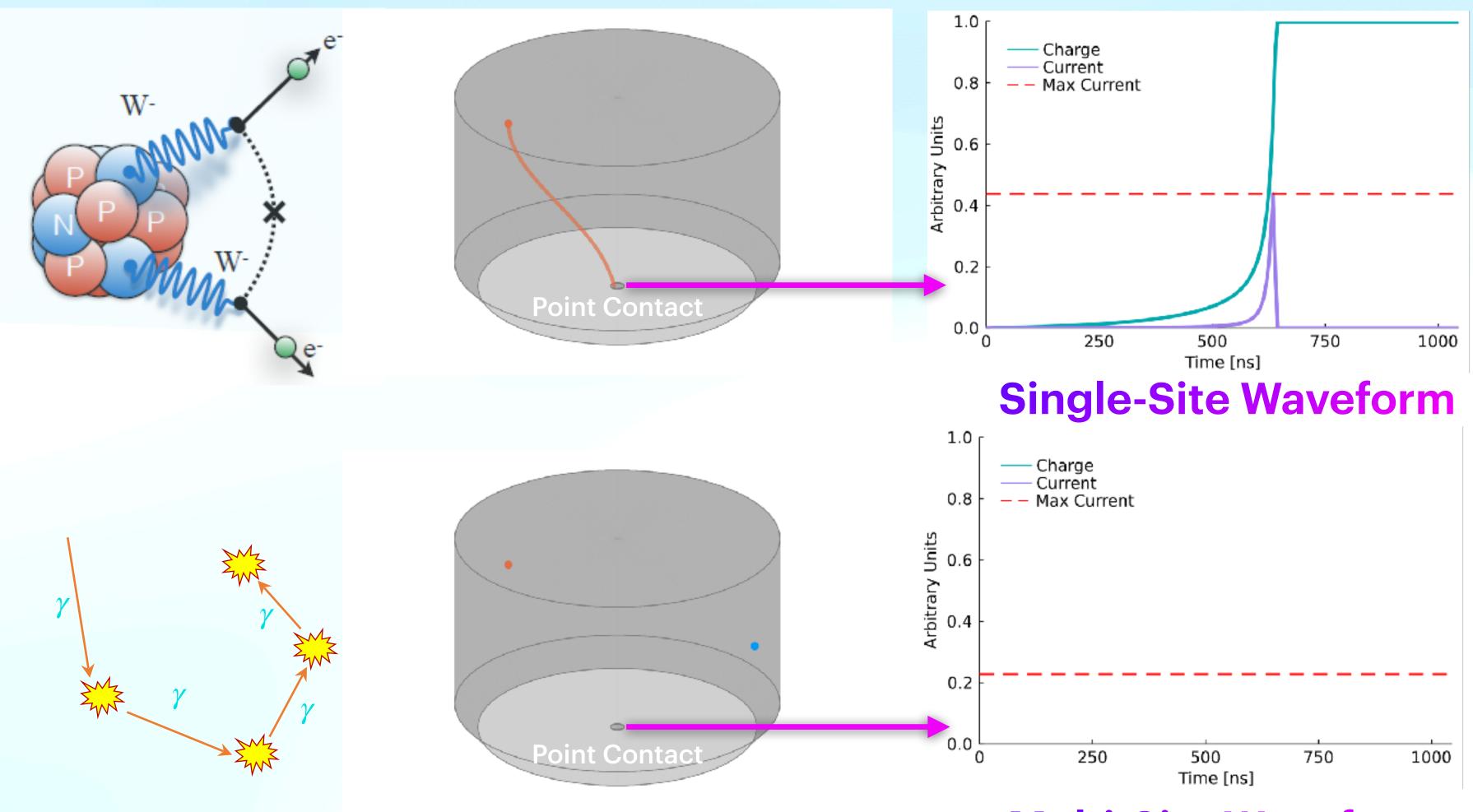




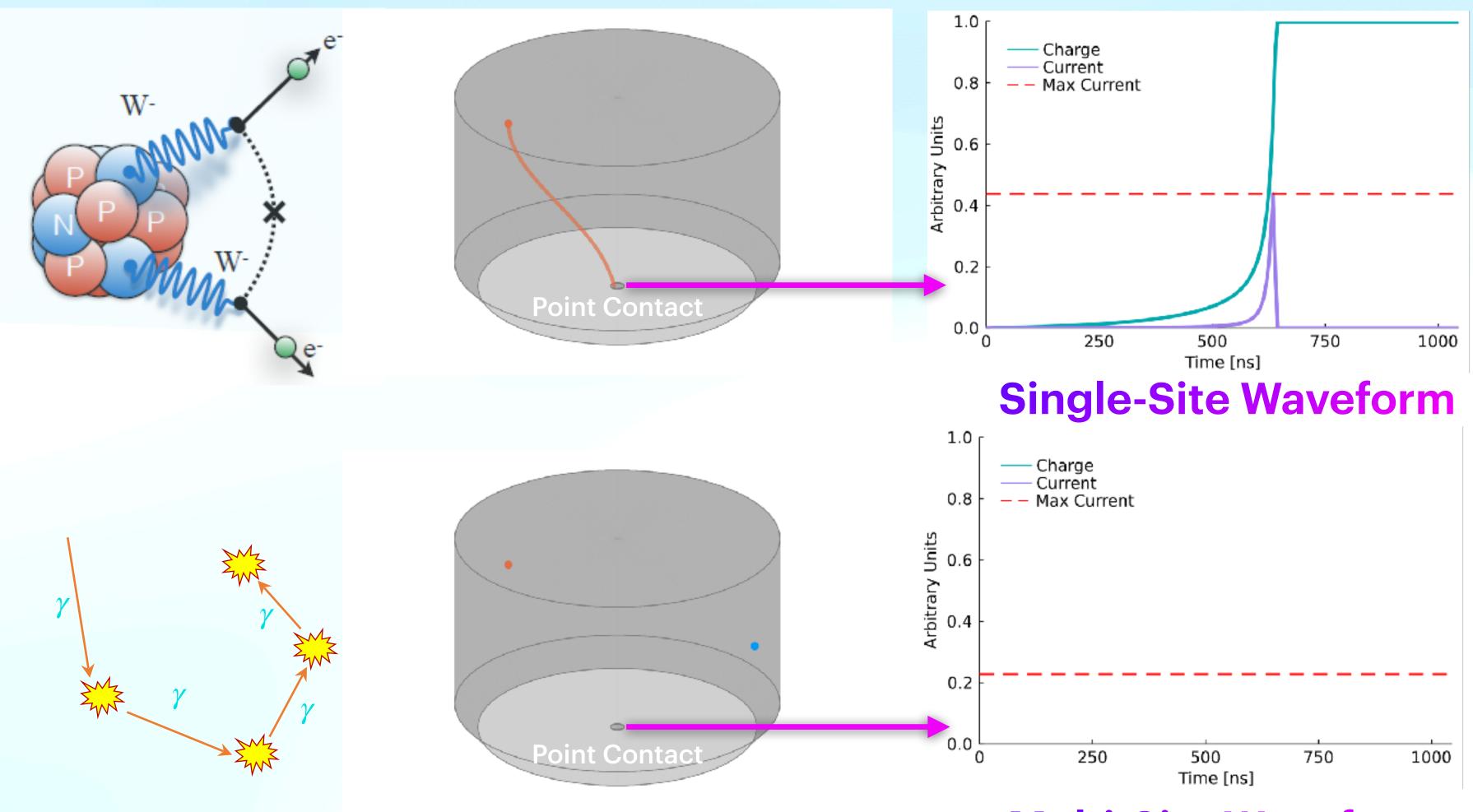




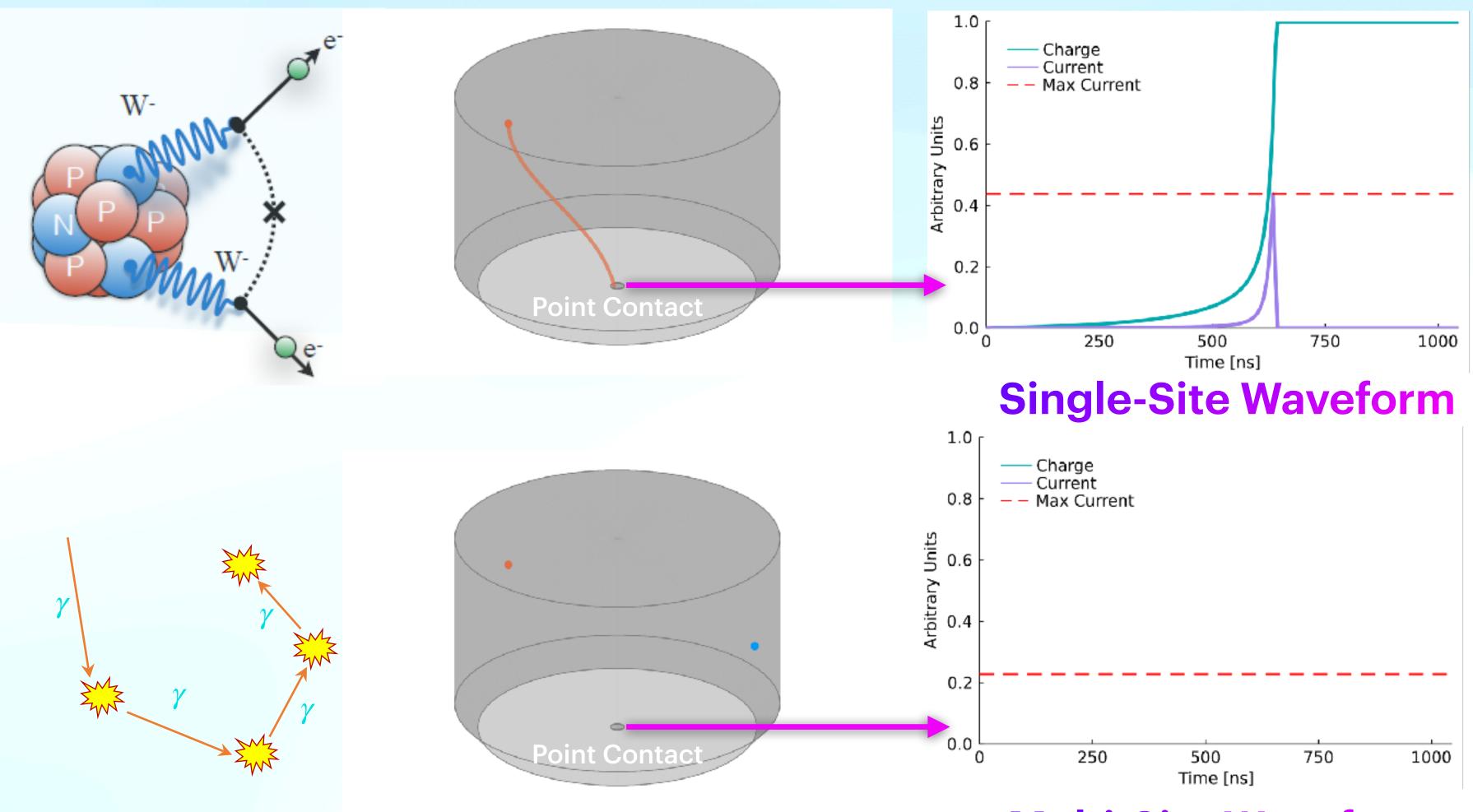




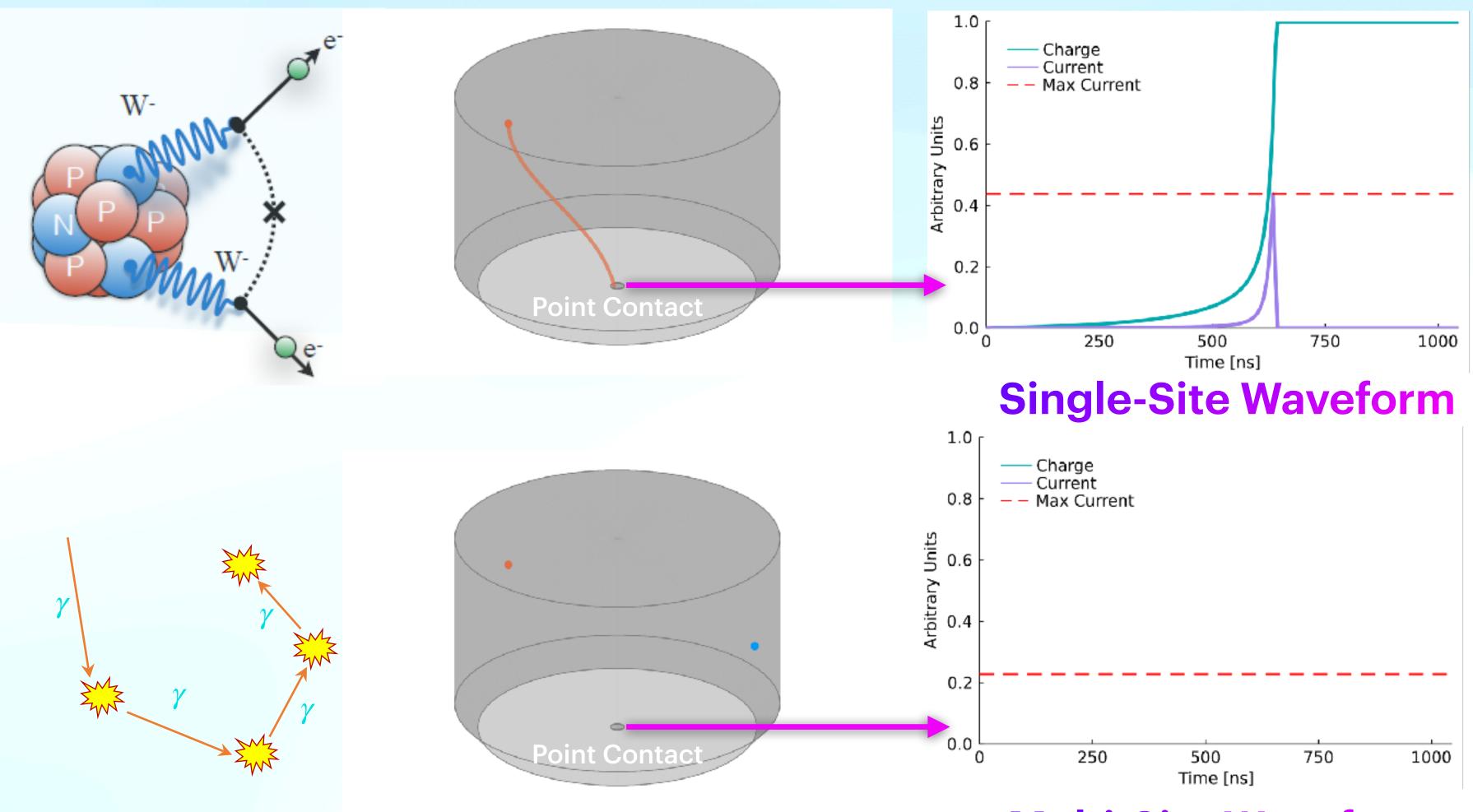
5 Multi-Site Waveform



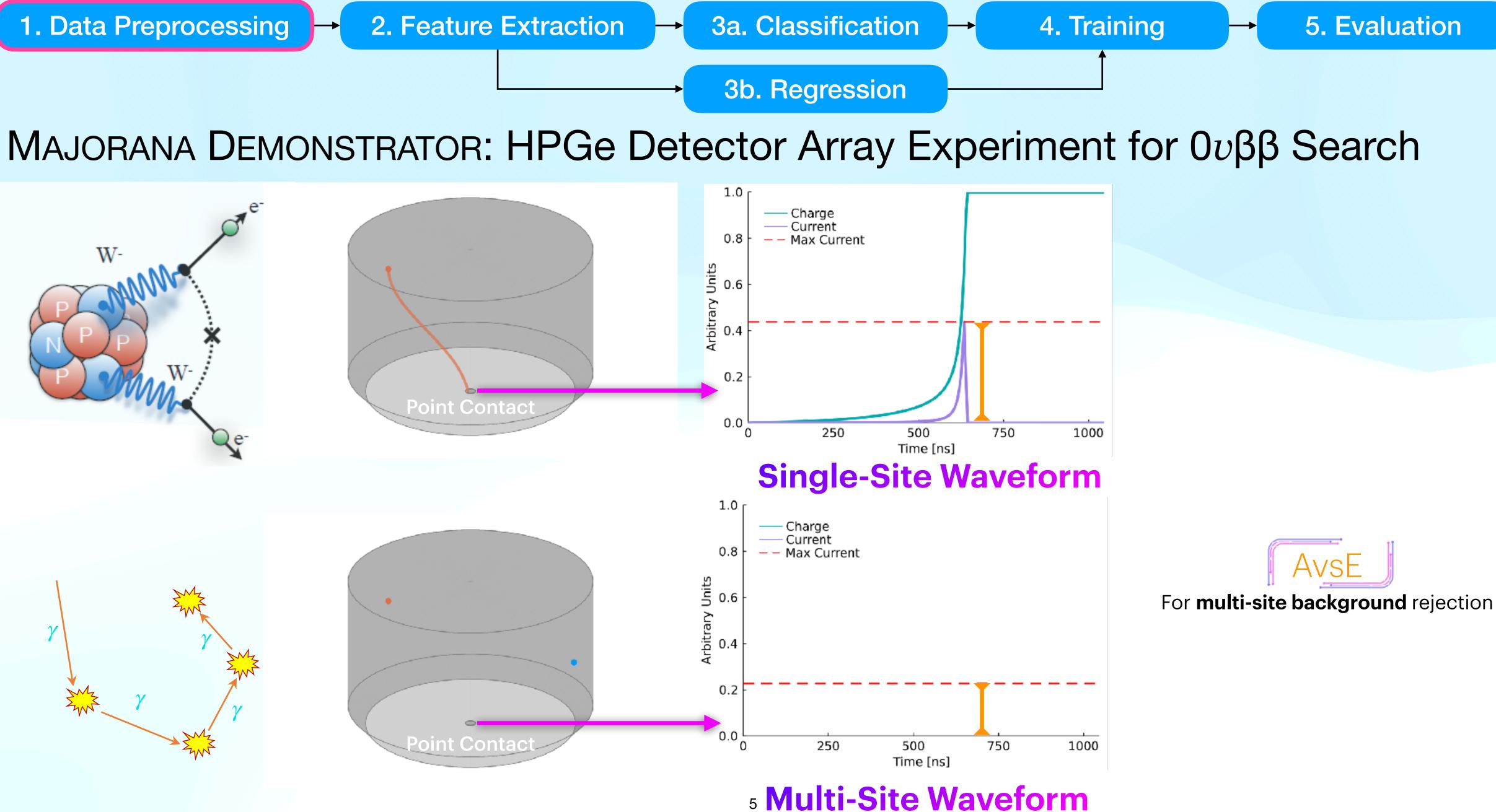
5 Multi-Site Waveform

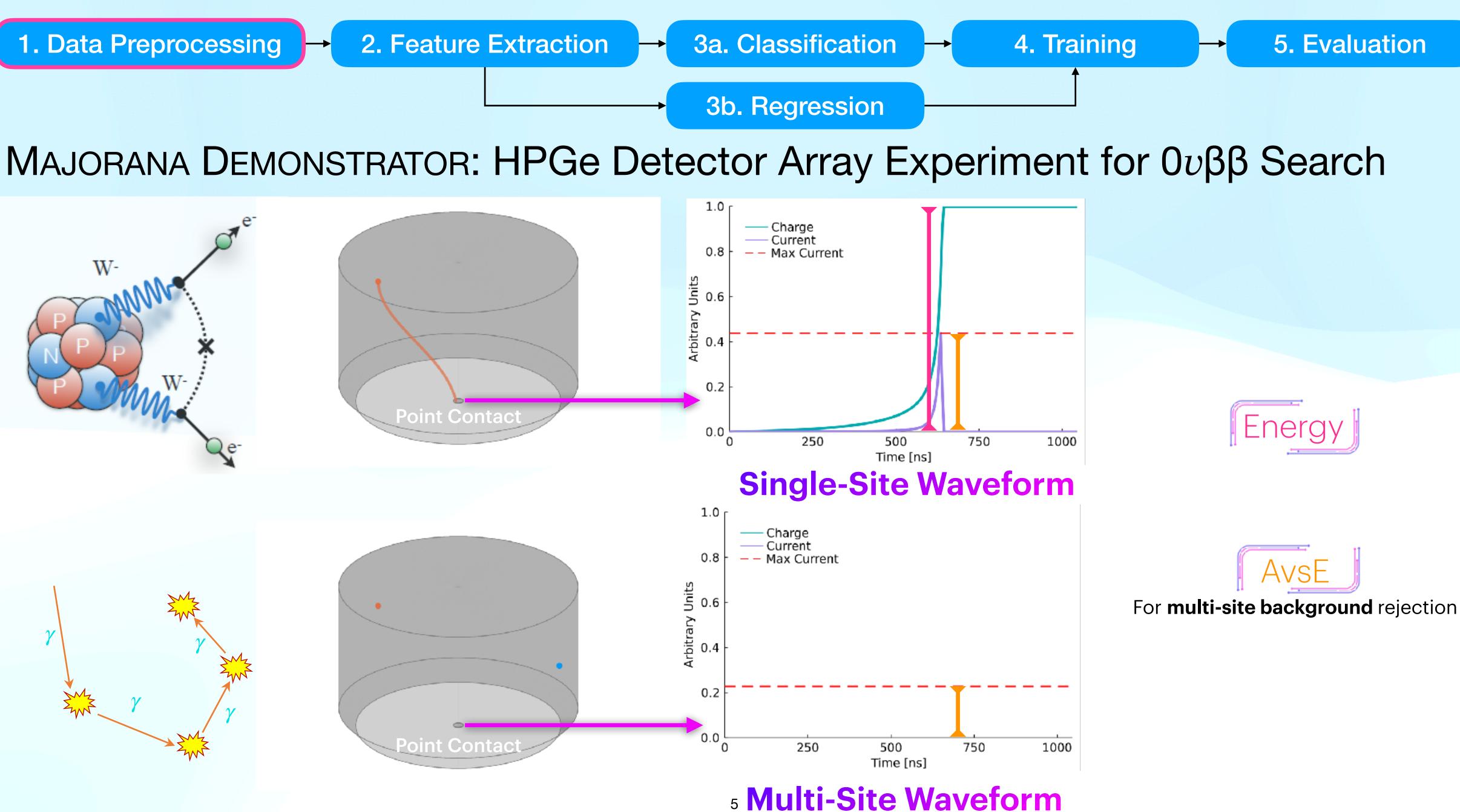


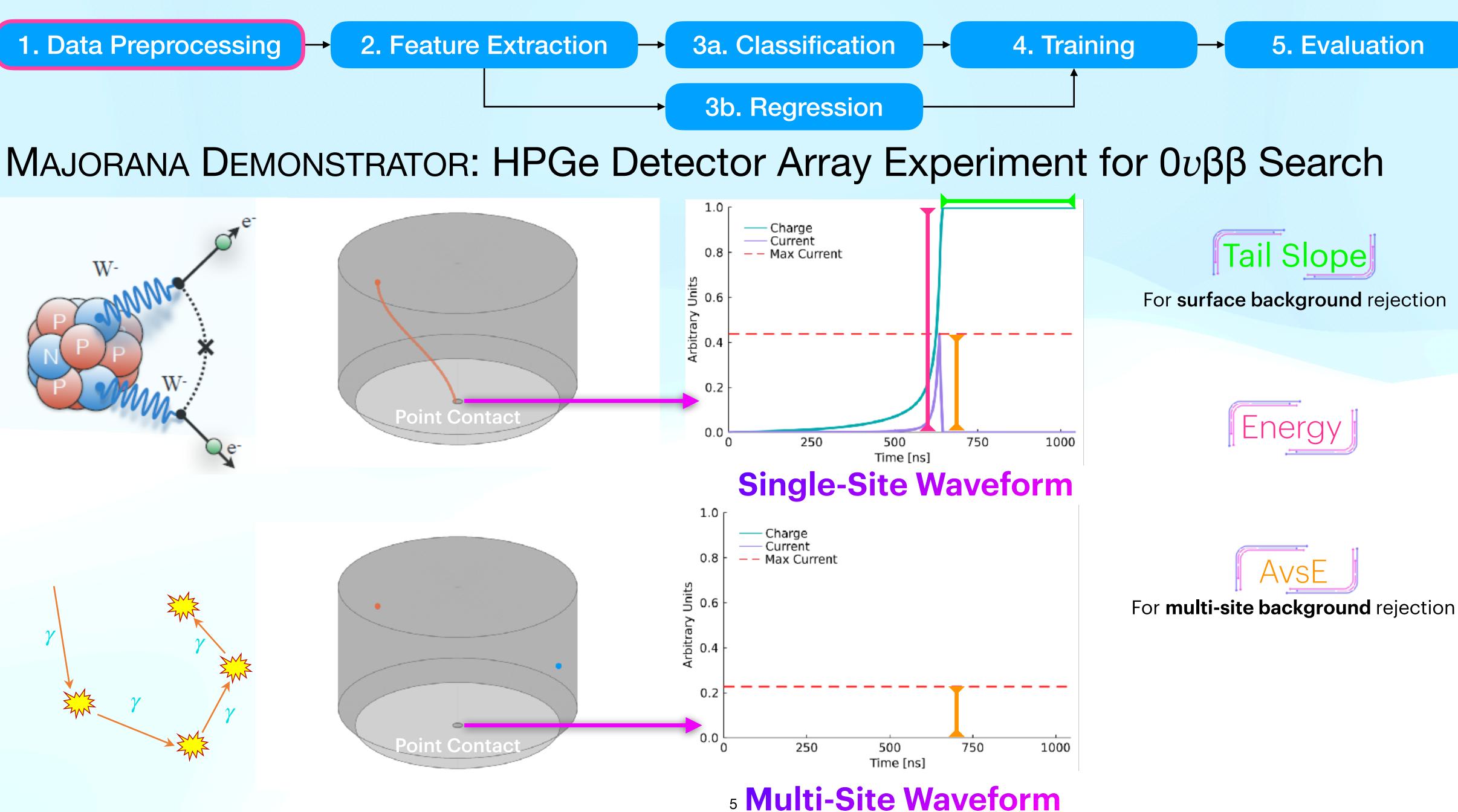
5 Multi-Site Waveform

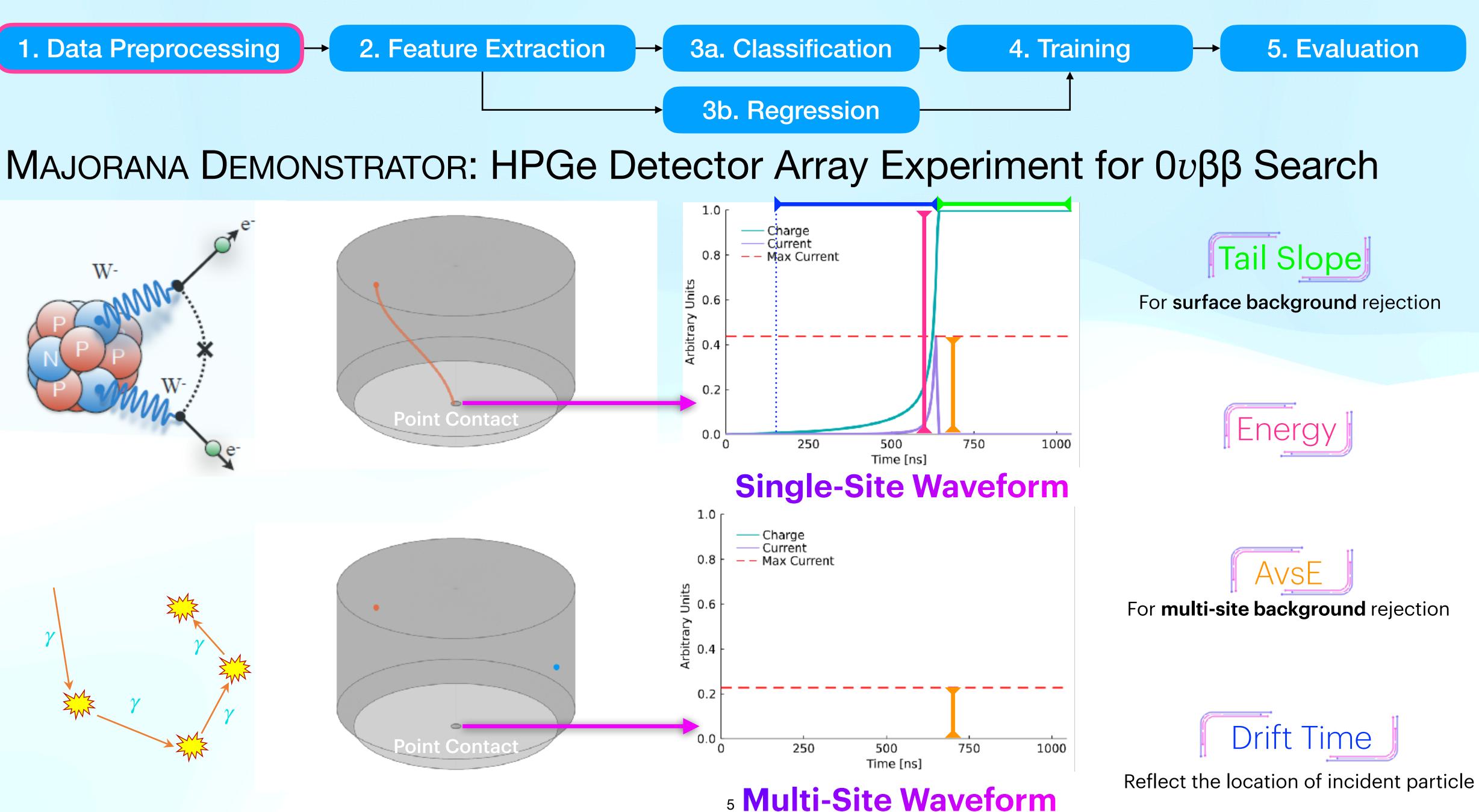


5 Multi-Site Waveform









Dataset: https://zenodo.org/records/8257027 **Document**: https://arxiv.org/abs/2308.10856

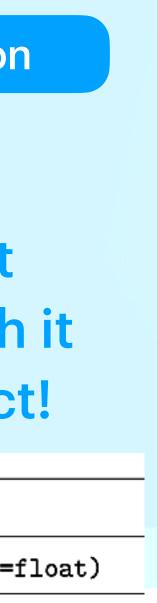
3a. Classification

3b. Regression

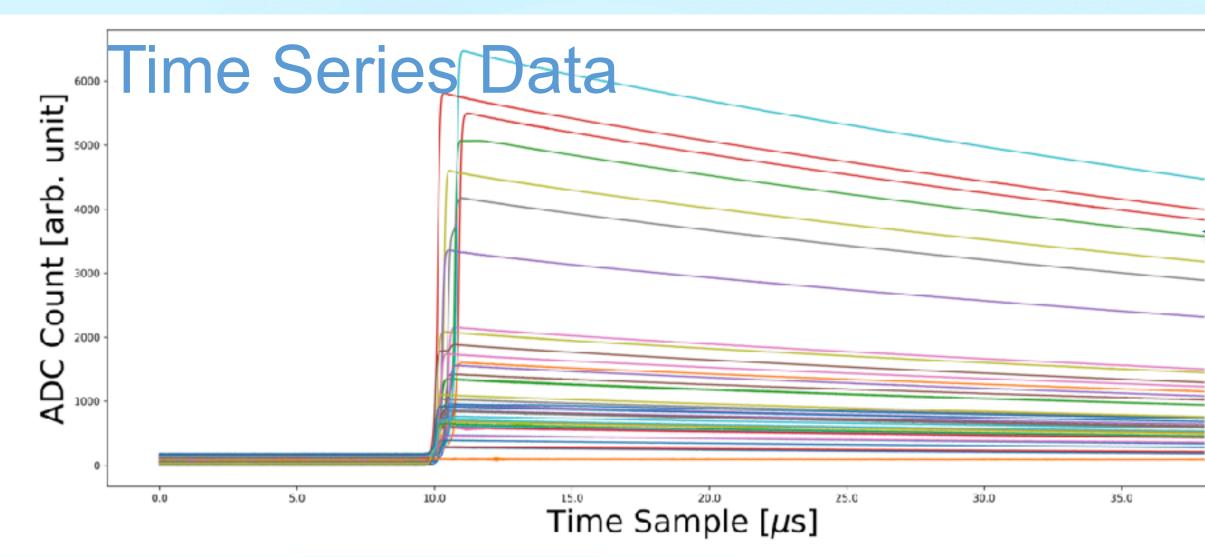
This is real data from a state-of-the-art physics experiment, feel free to play with it to do your own machine learning project!

_			
	Field	Description	Data Type
	raw_waveform	Detector Waveform	array(size=(3800,) dtype=
	energy_label	Analysis Label	Energy float
	psd_label_low_avse	Analysis Label	binary
	psd_label_high_avse	Analysis Label	AVSE
	psd_label_dcr	Analysis Label	il Sope binary
	psd_label_lq	Analysis Label	binary
-	tp0	Analysis Parameter	integer
-	detector	Metadata	integer
	run_number	Metadata	integer
	id	Metadata	integer
_			

More on MJD: https://www.energy.gov/science/ np/articles/majorana-demonstrator-gives-itsfinal-answer-about-rare-nuclear-decay



Dataset: https://zenodo.org/records/8257027 **Document**: https://arxiv.org/abs/2308.10856



3a. Classification

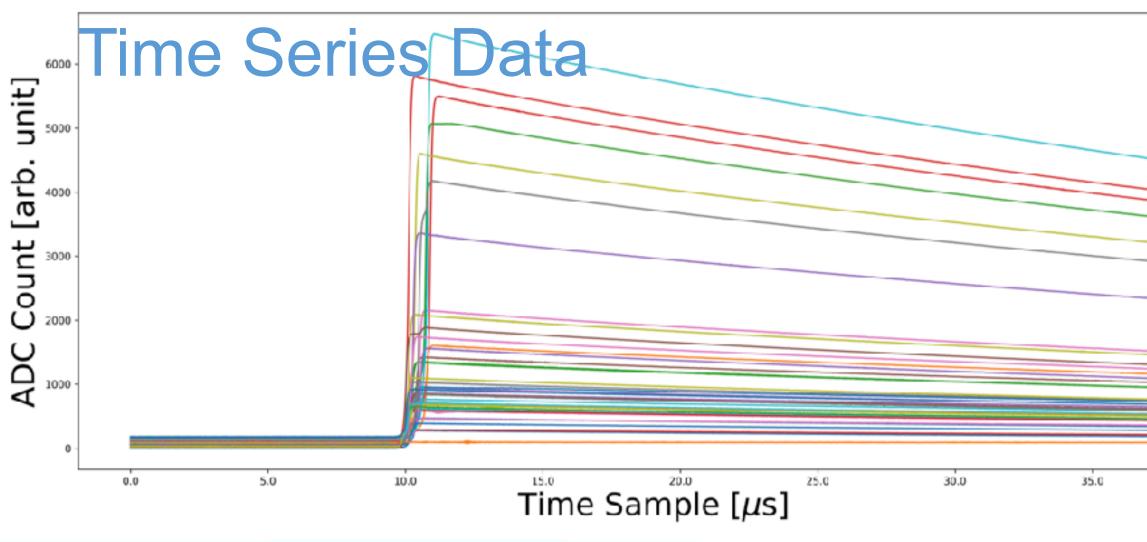
3b. Regression

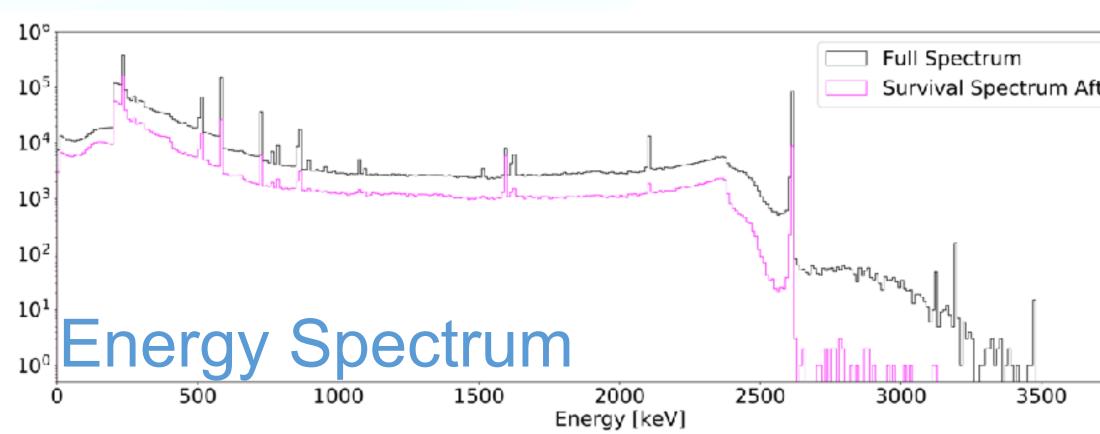
This is real data from a state-of-the-art physics experiment, feel free to play with it to do your own machine learning project!

	Field	Description	Data Type
_	raw_waveform	Detector Waveform	array(size=(3800,) dtype=
	energy_label	Analysis Label	Energy float
	psd_label_low_avse	Analysis Label	binary
	psd_label_high_avse	Analysis Label	AVSE
	psd_label_dcr	Analysis Label	il Slope ^{binary}
	psd_label_lq	Analysis Label	binary
	tp0	Analysis Parameter	integer
	detector	Metadata	integer
	run_number	Metadata	integer
	id	Metadata	integer

More on MJD: https://www.energy.gov/science/ np/articles/majorana-demonstrator-gives-itsfinal-answer-about-rare-nuclear-decay

Dataset: https://zenodo.org/records/825702 Document: https://arxiv.org/abs/2308.1085





3a. Classification

3b. Regression

<u>)27</u> 56		l data from a eriment, feel			
	to do your o	own machine	e learning	, proje	ect
	Field	Description	Da	ata Type	
	raw_waveform	Detector Waveform	array(size=(3	800,) dty	pe=f
	energy_label	Analysis Label	Energy	float	
	psd_label_low_avse	Analysis Label		binary	
	psd_label_high_avse	Analysis Label	Avse	binary	
	psd_label_dcr	Analysis Label	ail Slope	binary	
	psd_label_lq	Analysis Label		binary	
	tp0	Analysis Parameter	i	nteger	
	detector	Metadata	i	nteger	
fter Cut	run_number	Metadata	i	nteger	
	id	Metadata	i	nteger	

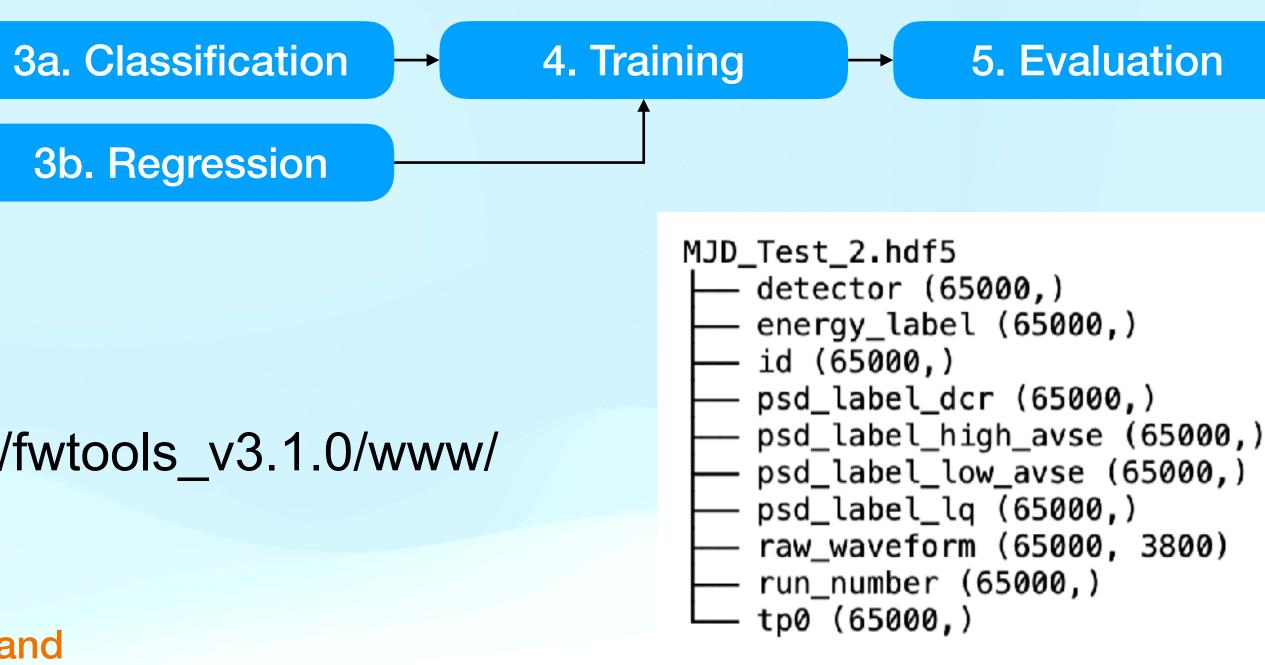
More on MJD: https://www.energy.gov/science/ np/articles/majorana-demonstrator-gives-itsfinal-answer-about-rare-nuclear-decay

All files are stored in .hdf5 format More readings on HDF5: https://web.mit.edu/fwtools v3.1.0/www/ H5.intro.html

Read file with h5py.File command

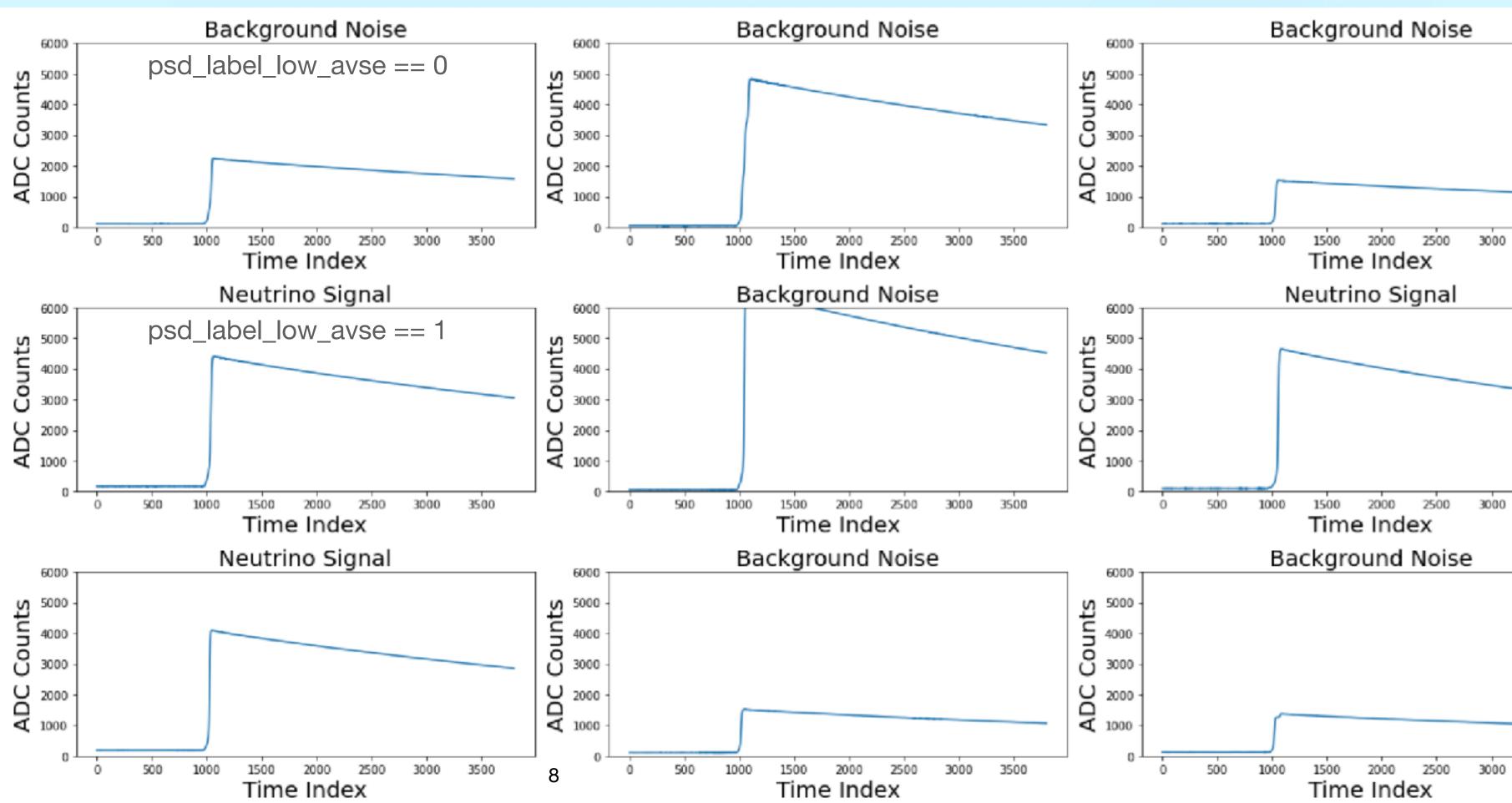
Code

	<pre>with h5py.File(file_path</pre>
Read "energy" field with indexing	<pre>——energy = np.array(fi</pre>
	<pre>#only selecting high</pre>
	<pre>selection_flage = en</pre>
	<pre>randind = np.arange(</pre>
	np.random.shuffle(ra
Read "waveform" field with indexing	ng—→data = np.array(file
	<pre>label = np.array(fil</pre>
	—→energy = np.array(fi



```
h, 'r') as file:
ile["energy_label"])
her energy event to make the task easier
nergy>self.energy_threshold
(selection_flage.sum())
andind)
e["raw_waveform"])[selection_flage][randind][:,500:1500]
le["psd_label_low_avse"])[selection_flage][randind]
ile["energy_label"])[selection_flage][randind]
```

Take a look at raw waveforms:



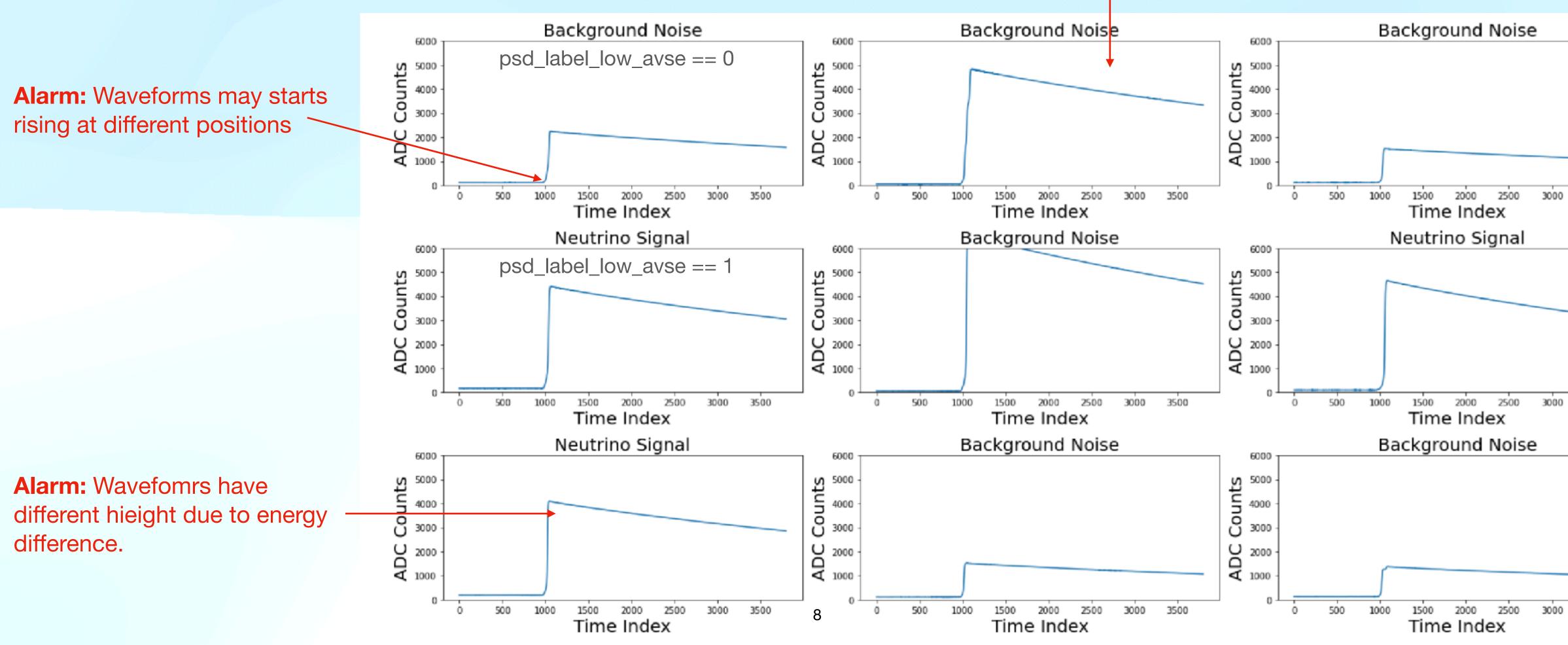
n

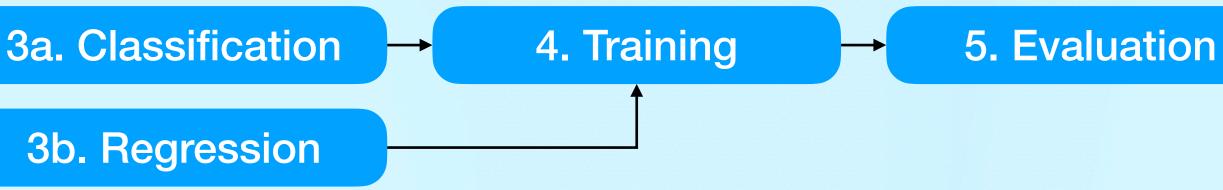
3000 3500

-		
000	3500	

000 3500

Take a look at raw waveforms:





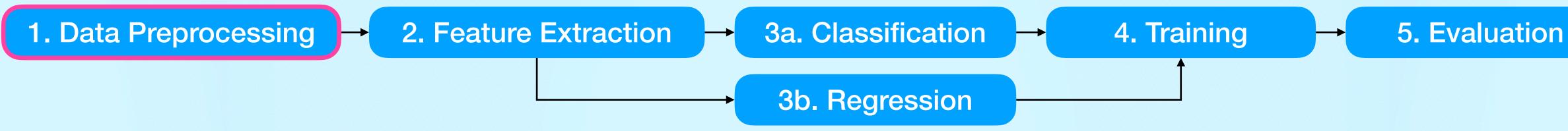
Alarm: tail region is too long, but it does not contain physics

n

3000 3500

 25.00	

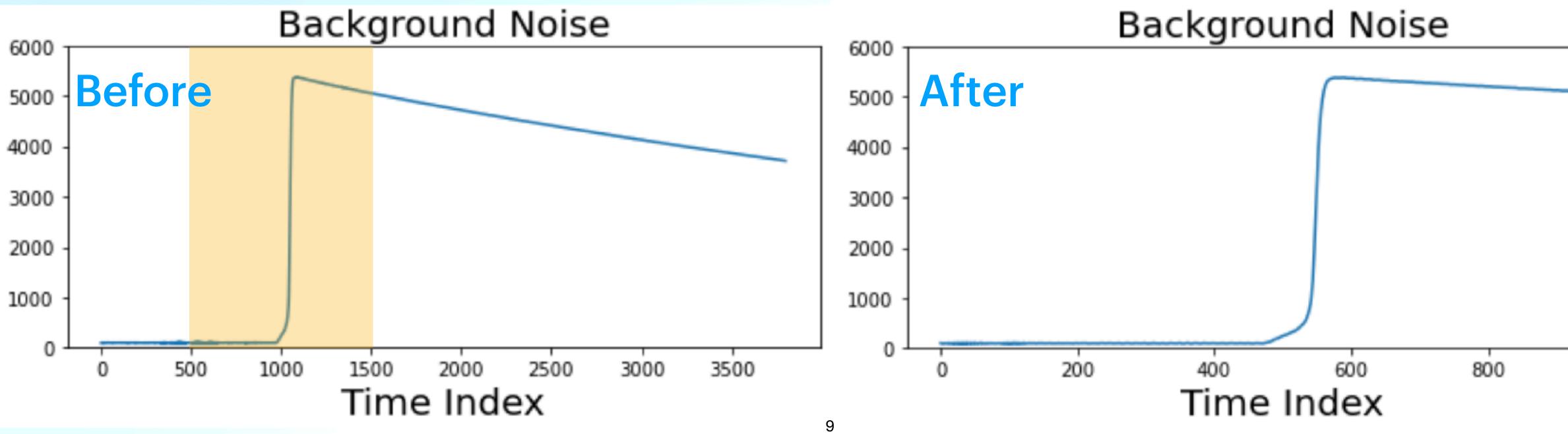
000 3500



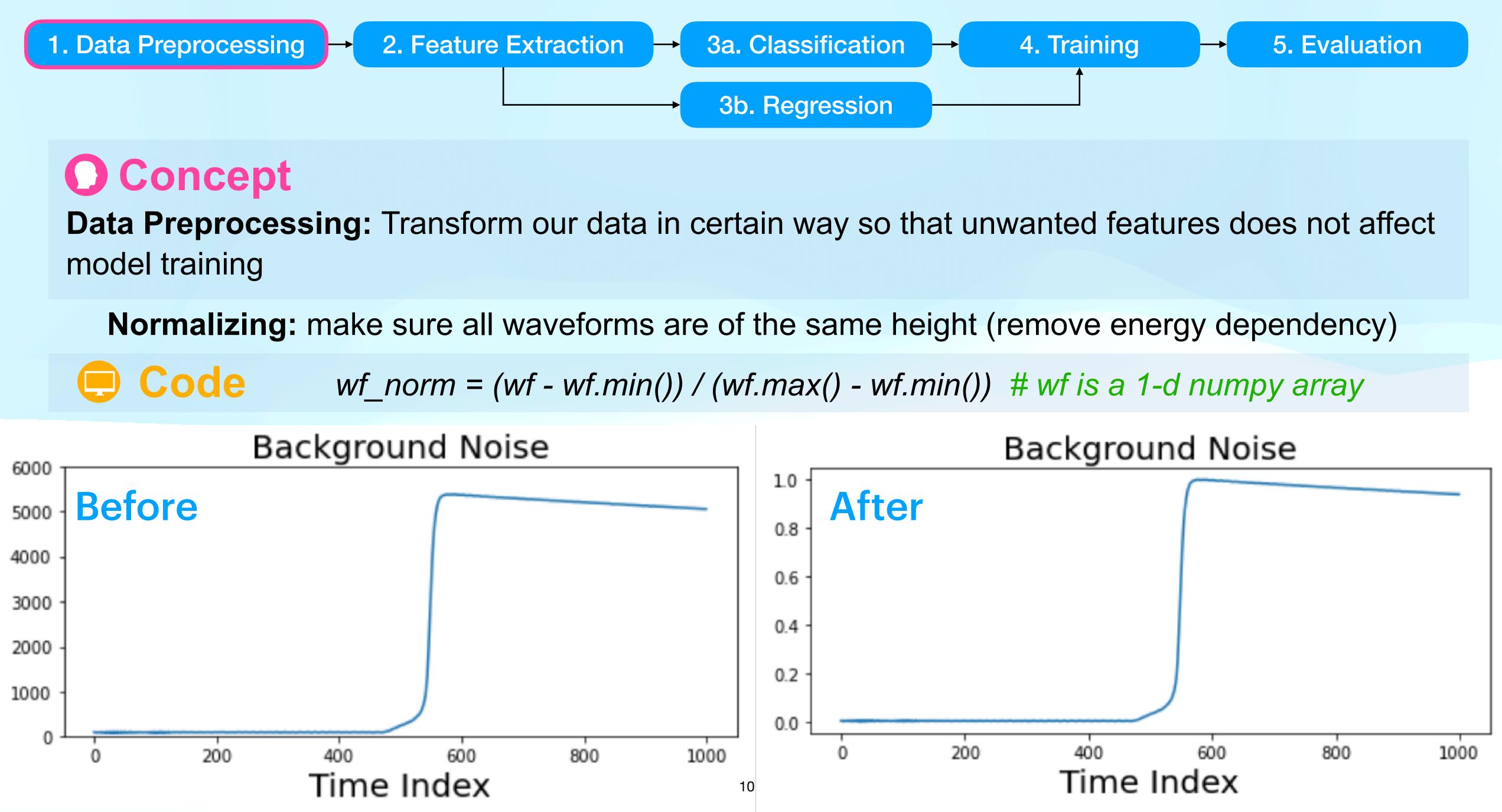
O Concept

Data Preprocessing: Transform our data in certain way so that unwanted features does not affect model training

Windowing: zoom in to the rising edge of the waveform that contains most of the physics



1000



O Concept

model training

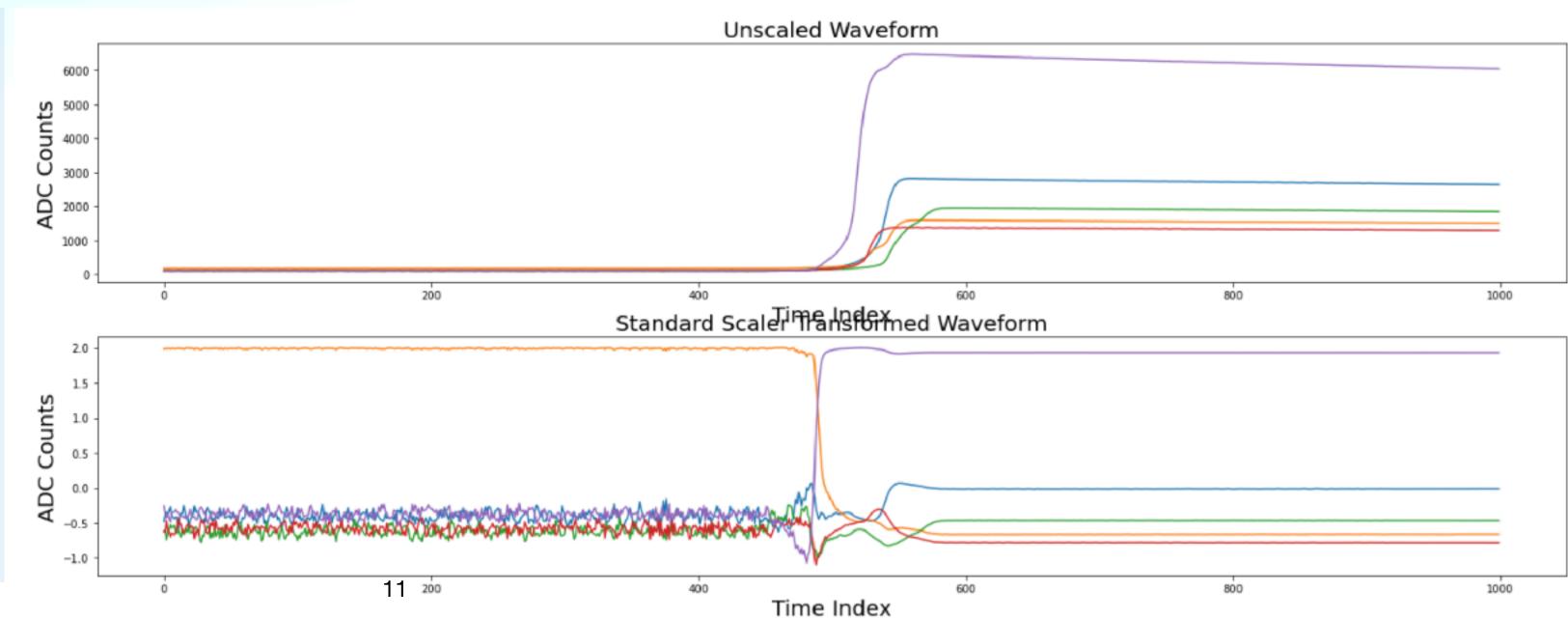
O Concept

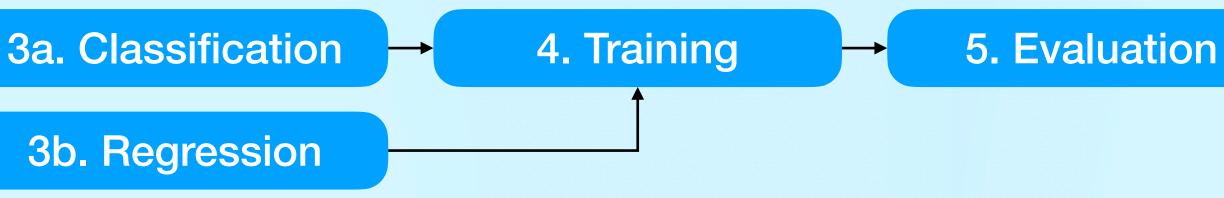
Code

sklearn package contains Standard Scaler

from sklearn.preprocessing import StandardScaler scaler = StandardScaler()

Has to be applied over multiple wfs wf_norm = scaler.fit_transform(wf_arr)





Data Preprocessing: Transform our data in certain way so that unwanted features does not affect

Standard Scaler: transform each dimension of data so that its mean = 0 and standard dev. = 1

1. Data Preprocessing

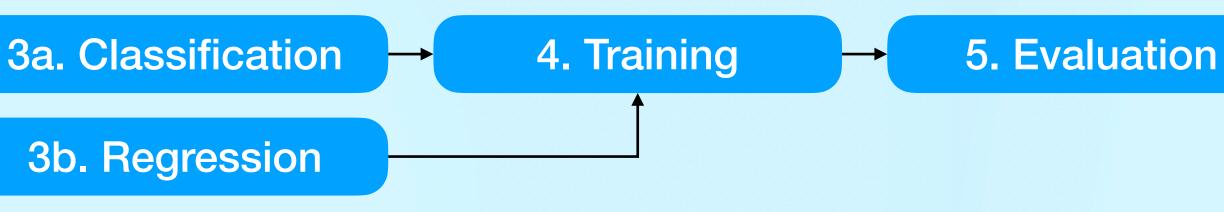
2. Feature Extraction

→

Putting everything into a PyTorch Dataset class

```
def __init__(self,plot=True):
    REQUIRED function
    This function initializes the dataset object
    1.1.1
def __len__(self):
    REQUIRED function
    This function returns the size of overall dataset
    1.1.1
    return
def __getitem__(self, idx):
    REQUIRED function
    This function extract a single waveform from the dataset at the given index idx
    1.1.1
    return
def plot_data(self):
    OPTIONAL functions
    1.1.1
```


- Only called once when initializing the object
- Read information from the .hdf5 file into array(s) \bullet
 - apply dataset-level pre-processing like StandardScaler



Putting everything into a PyTorch Dataset class

```
>def __init__(self,plot=True):
                                                    self.waveform: (65000, 1000)
                                                    self.energy_label: (65000,)
    REQUIRED function
                                                    self.psd_label_low_avse: (65000,)
    This function initializes the dataset object
     111
def __len__(self):
    REQUIRED function
    This function returns the size of overall dataset
     1.1.1
    return
def __getitem__(self, idx):
    REQUIRED function
    This function extract a single waveform from the dataset at the given index idx
     1.1.1
    return
def plot_data(self):
    OPTIONAL functions
     1.1.1
```


- Only called once when initializing the object
- Read information from the .hdf5 file into array(s) \bullet
 - apply dataset-level pre-processing like StandardScaler
- Return length of the dataset
- Called whenever we run len(dataset_object)

Putting everything into a PyTorch Dataset class

```
>def __init__(self,plot=True):
                                                    self.waveform: (65000, 1000)
                                                    self.energy_label: (65000,)
    REQUIRED function
                                                    self.psd_label_low_avse: (65000,)
    This function initializes the dataset object
     1.1.1
def __len__(self):
    REQUIRED function
    This function returns the size of overall dataset
     1.1.1
    return 65000
def __getitem__(self, idx):
    REQUIRED function
    This function extract a single waveform from the dataset at the given index idx
     1.1.1
    return
def plot_data(self):
    OPTIONAL functions
     1.1.1
```


- Only called once when initializing the object
- Read information from the .hdf5 file into array(s)
 - apply dataset-level pre-processing like StandardScaler
- Return length of the dataset
- Called whenever we run len(dataset_object)
- Return one data point at input index idx
- Datapoint-level preprocessing can go here (i.e. Normalizing)
- Will be called very frequently during network training and validation
 - Don't put slow operations here!

Code Putting everything into a PyTorch Dataset class

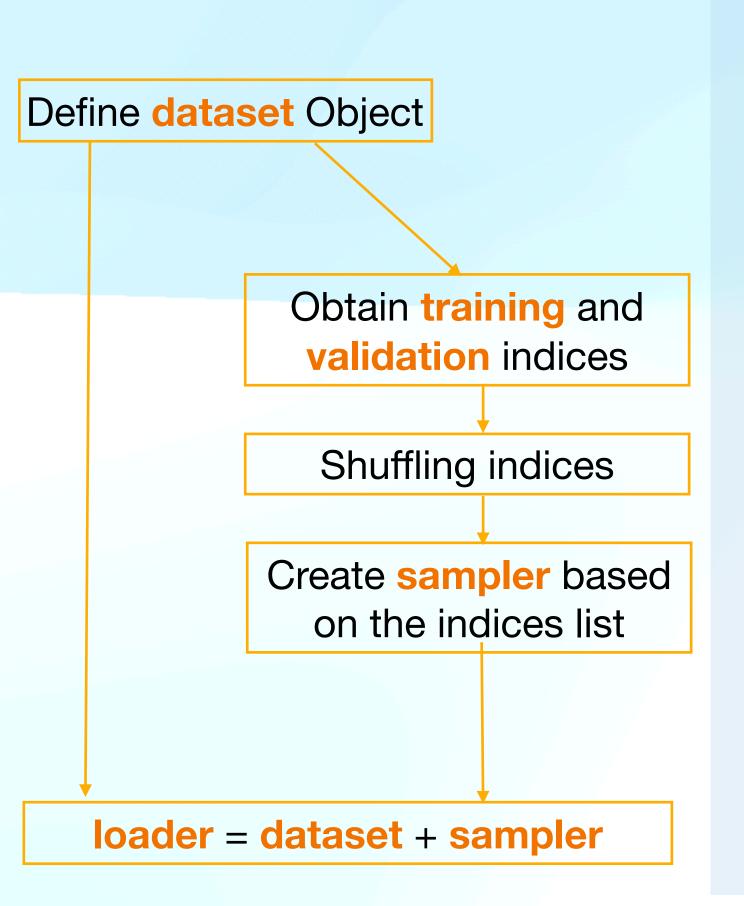
```
>def __init__(self,plot=True):
                                                    self.waveform: (65000, 1000)
                                                   self.energy_label: (65000,)
    REQUIRED function
                                                    self.psd_label_low_avse: (65000,)
    This function initializes the dataset object
     1.1.1
def __len__(self):
    REQUIRED function
    This function returns the size of overall dataset
    return 65000
def __getitem__(self, idx):
    REQUIRED function
    This function extract a single waveform from the dataset at the given index idx
    return self.waveform[idx], self.psd_label_low_avse[idx], self.energy_label[idx]
def plot_data(self):
    OPTIONAL functions
    1.1.1
```

- Only called once when initializing the object
- Read information from the .hdf5 file into array(s)
 - apply dataset-level pre-processing like StandardScaler
- Return length of the dataset
- Called whenever we run len(dataset_object)
- Return one data point at input index idx
- Datapoint-level preprocessing can go here (i.e. Normalizing)
- Will be called very frequently during network training and validation
 - Don't put slow operations here!
- Define as many helper functions as you like

Code Putting everything into a PyTorch Dataset class

```
>def __init__(self,plot=True):
                                                   self.waveform: (65000, 1000)
                                                   self.energy_label: (65000,)
    REQUIRED function
                                                   self.psd_label_low_avse: (65000,)
    This function initializes the dataset object
     1.1.1
def __len__(self):
    REQUIRED function
    This function returns the size of overall dataset
    return 65000
def __getitem__(self, idx):
    REQUIRED function
    This function extract a single waveform from the dataset at the given index idx
    return self.waveform[idx], self.psd_label_low_avse[idx], self.energy_label[idx]
def plot_data(self):
    OPTIONAL functions
```

1. Data Preprocessing



data loader

dataset = NeutrinoDataset(plot=False)

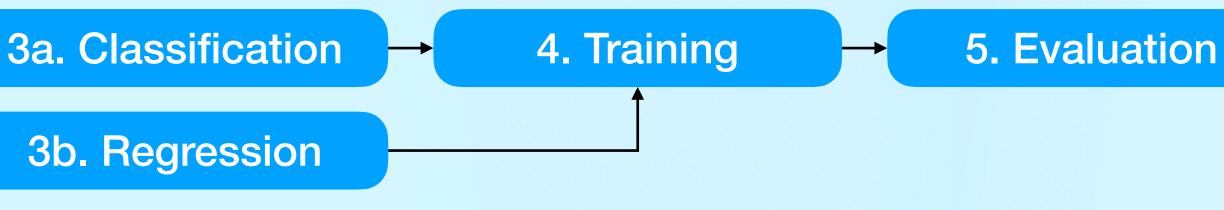
indices [0:train_test_split] is the training dataset,

train_test_split = int(0.7*len(dataset))

#Shuffle the two indices list np.random.shuffle(train_indices) np.random.shuffle(val_indices)

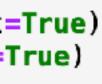
train_sampler = SubsetRandomSampler(train_indices) valid_sampler = SubsetRandomSampler(val_indices)

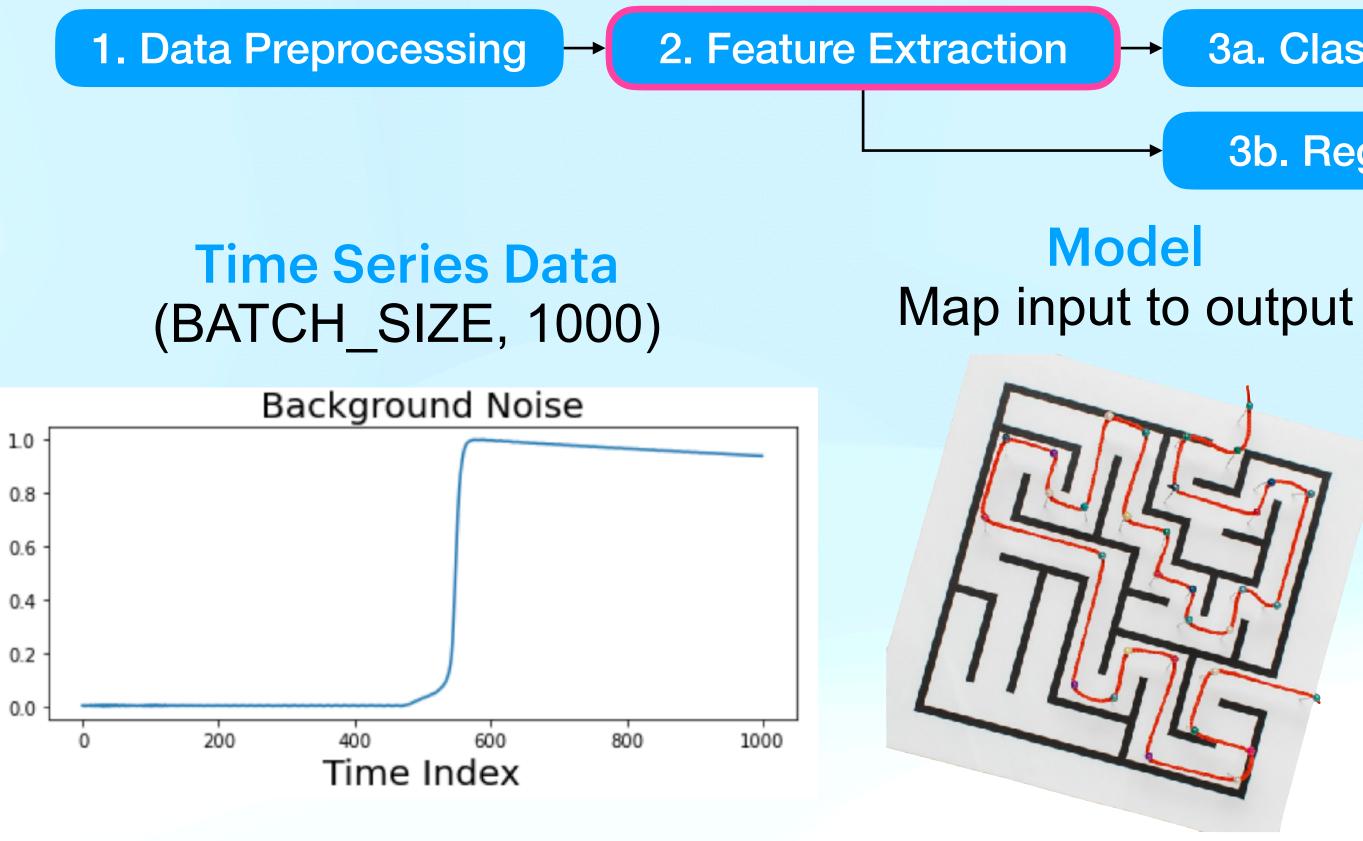
test_loader = data_utils.DataLoader(dataset, batch_size=BATCH_SIZE,sampler=valid_sampler, drop_last=True)



Used the pre-defined class on last slides to construct training and testing

```
Get the indices of train dataset and test dataset correspondingly,
indices [train_test_split, len(dataset)] is the test dataset.
train_indices, val_indices = list(range(train_test_split)), list(range(train_test_split,len(dataset)))
                                  Batch: group n waveforms together into a 2D array
                                             (1000,) \rightarrow (BATCH\_SIZE, 1000)
# Define two subset random sampler to sample events according to the training indices
Finally, define the loader by passing in the dataset, batch size and corresponding sampler
Note that the number of data in each sub-dataset might not be divisibe by the batch size,
so drop_last=True drops the last batch with all the residual events.
train_loader = data_utils.DataLoader(dataset, batch_size=BATCH_SIZE, sampler=train_sampler, drop_last=True)
```



3a. Classification

4. Training

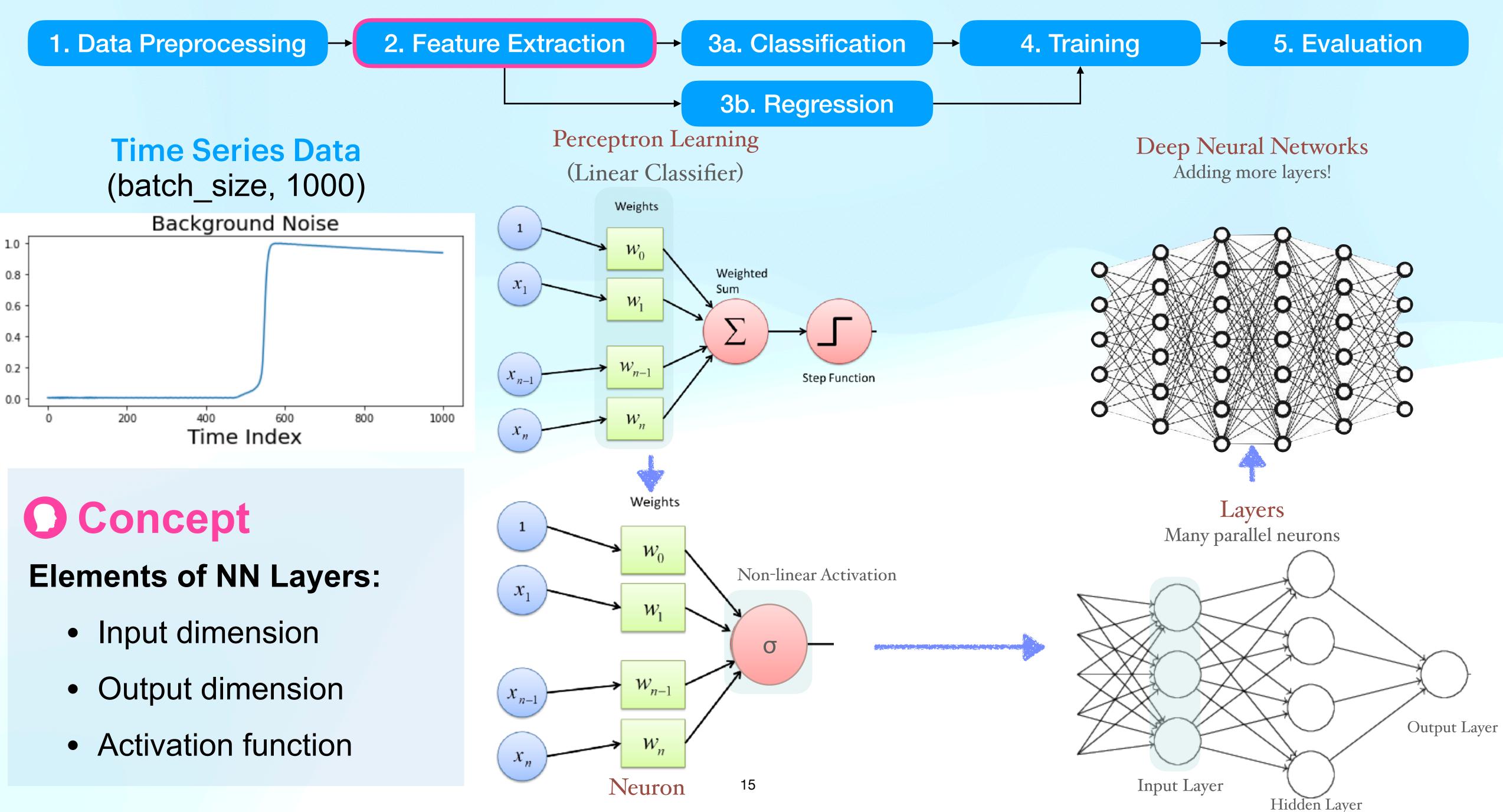
5. Evaluation

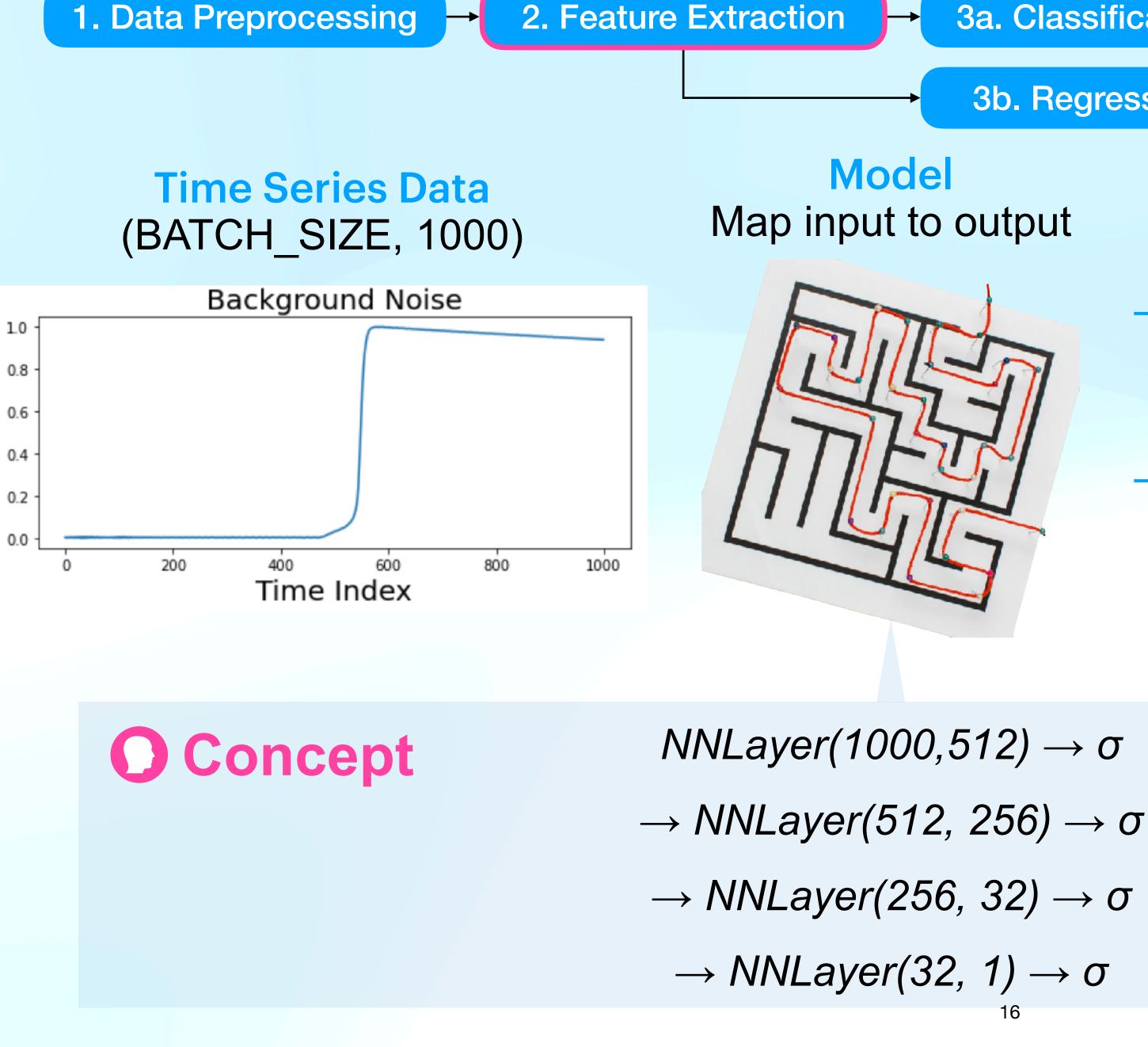
3b. Regression

Signal or Background (batch_size, 1)

Event Energy (batch_size, 1)

energy_label (batch_size, 1)





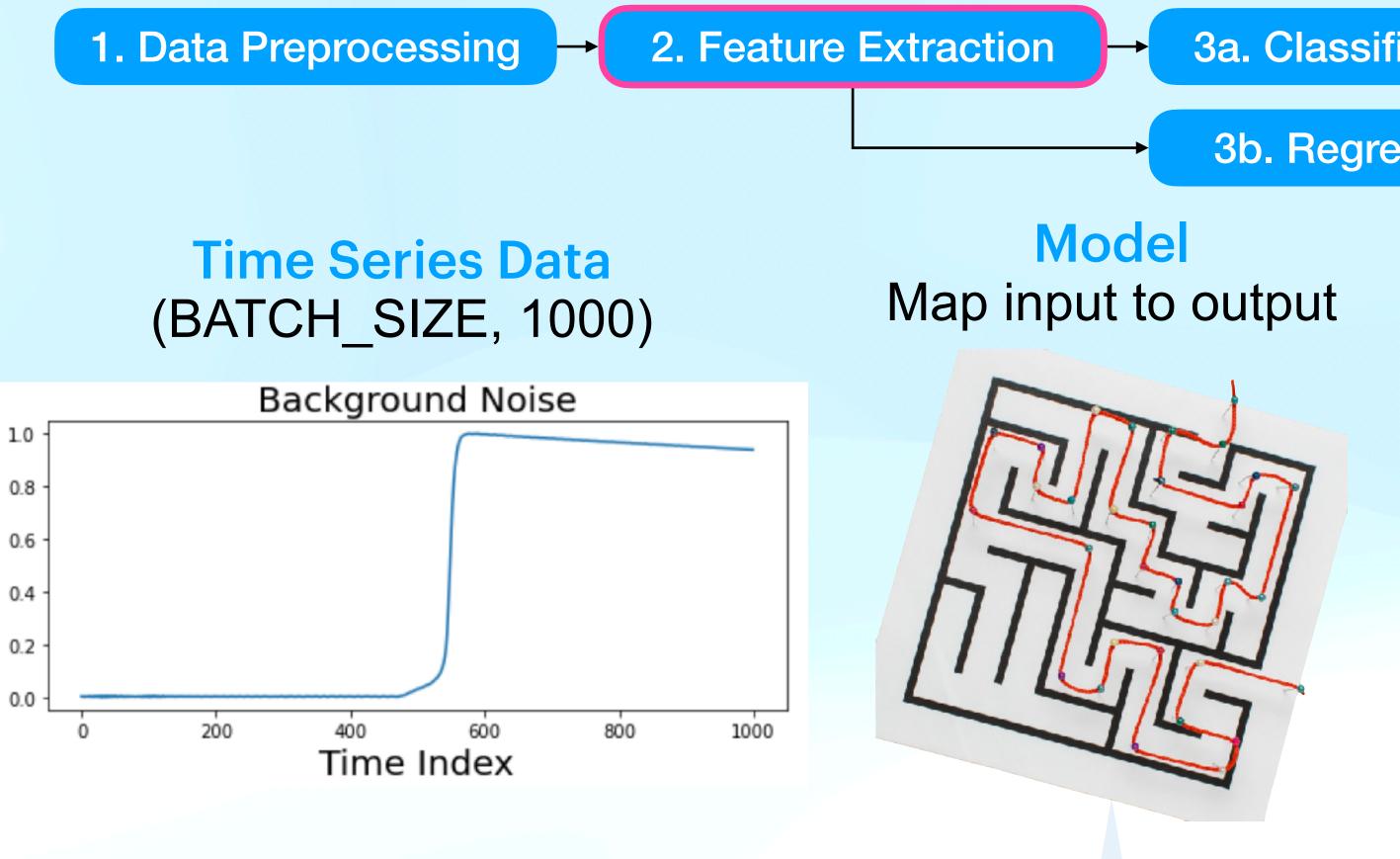
4. Training

3b. Regression

Signal or Background (batch_size, 1)

Event Energy (batch size, 1)

energy_label (batch_size, 1)



O Concept **Feature Extractor** Network

Take raw data as the input and output a low-dimensional vector NNLayer(1000,

 $\rightarrow NNLayer(512)$

3a. Classification

4. Training

5. Evaluation

3b. Regression

Signal or Background (batch_size, 1)

Event Energy (batch_size, 1)

energy_label (batch_size, 1)

$$NNLayer(1000,512) \rightarrow \sigma$$

$$\rightarrow NNLayer(512, 256) \rightarrow \sigma$$

$$\rightarrow NNLayer(256, 32) \rightarrow \sigma$$

$$\rightarrow NNLayer(32, 1) \rightarrow \sigma$$

1. Data Preprocessing

2. Feature Extraction

Code

class FCNet(nn.Module): def __init__(self):

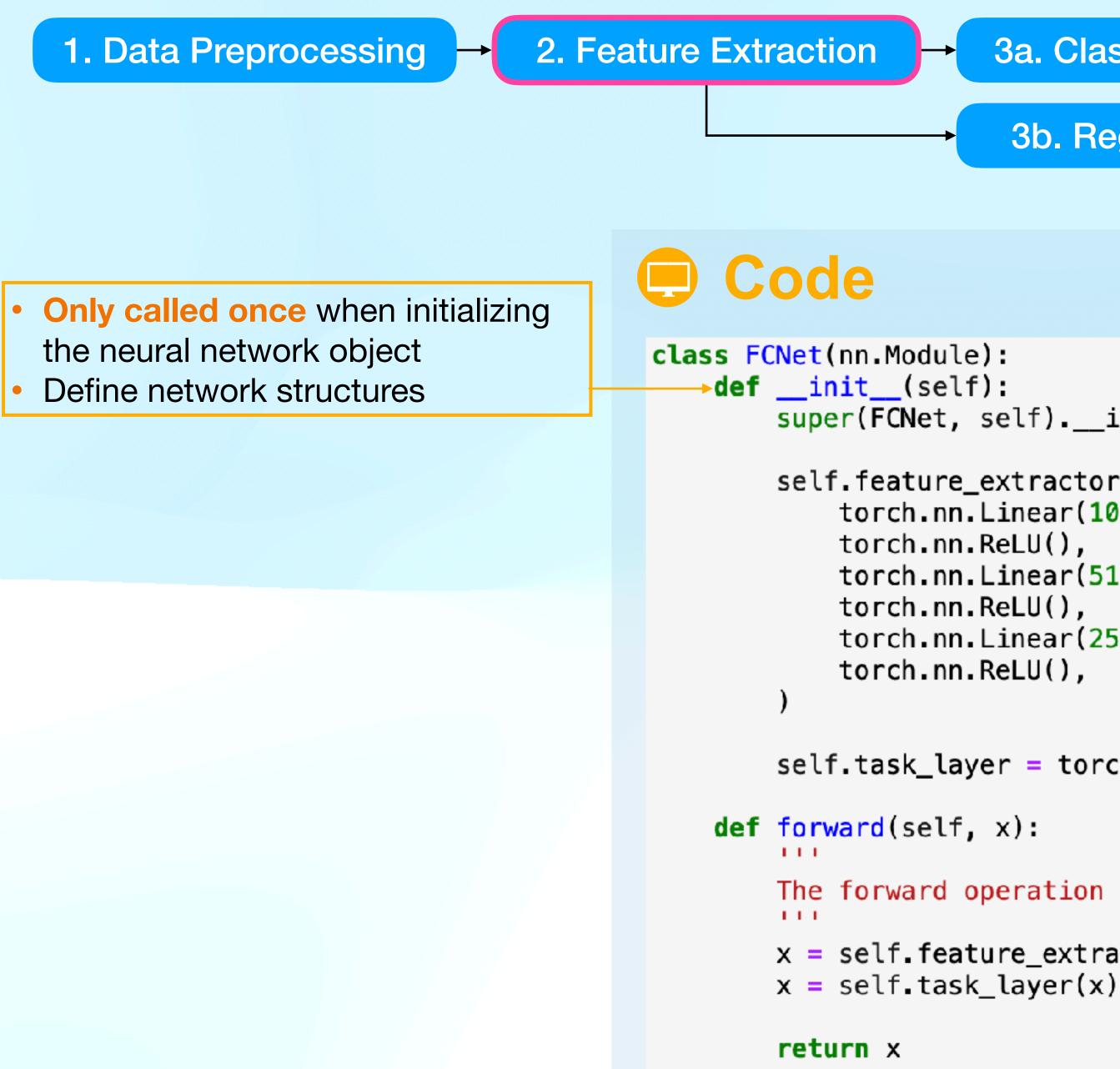
> torch.nn.ReLU(), torch.nn.ReLU(), torch.nn.ReLU(), def forward(self, x): 111 1.1.1

> > x = self.task_layer(x)

return x

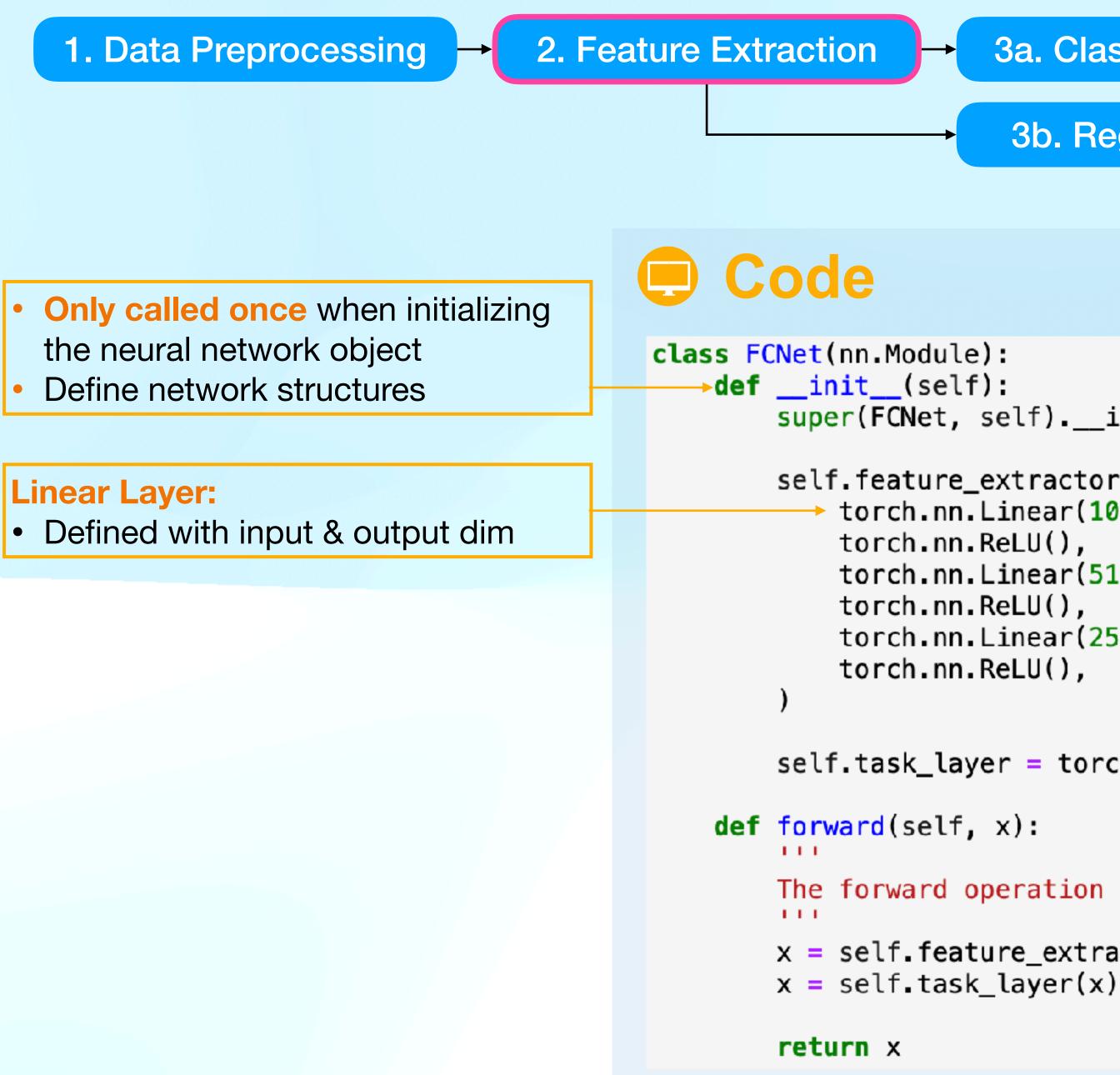
```
4. Training
3a. Classification
                                                 5. Evaluation
3b. Regression
```

```
super(FCNet, self).__init__()
self.feature_extractor = nn.Sequential(
    torch.nn.Linear(1000, 512),
    torch.nn.Linear(512, 256),
    torch.nn.Linear(256, 32),
self.task_layer = torch.nn.Linear(32, 1)
The forward operation of each training step
x = self.feature_extractor(x)
```



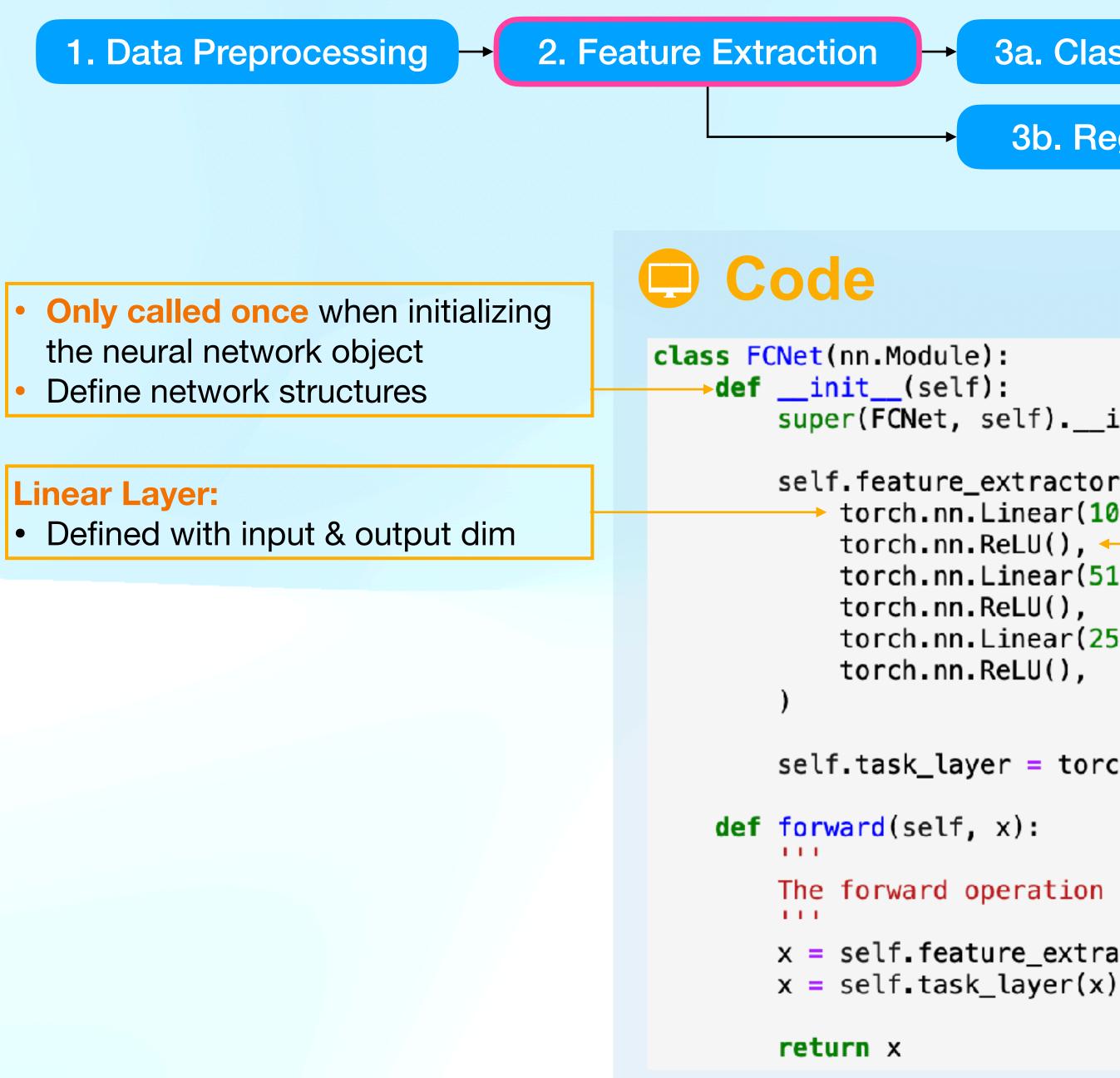
```
3a. Classification
                           4. Training
                                                  5. Evaluation
3b. Regression
```

```
super(FCNet, self).__init__()
self.feature_extractor = nn.Sequential(
    torch.nn.Linear(1000, 512),
    torch.nn.Linear(512, 256),
    torch.nn.Linear(256, 32),
self.task_layer = torch.nn.Linear(32, 1)
The forward operation of each training step
x = self.feature_extractor(x)
```



```
3a. Classification
                           4. Training
                                                  5. Evaluation
3b. Regression
```

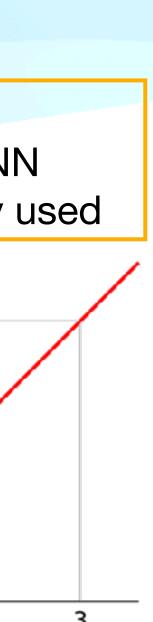
```
super(FCNet, self).__init__()
self.feature_extractor = nn.Sequential(
    torch.nn.Linear(1000, 512),
    torch.nn.Linear(512, 256),
    torch.nn.Linear(256, 32),
self.task_layer = torch.nn.Linear(32, 1)
The forward operation of each training step
x = self.feature_extractor(x)
```

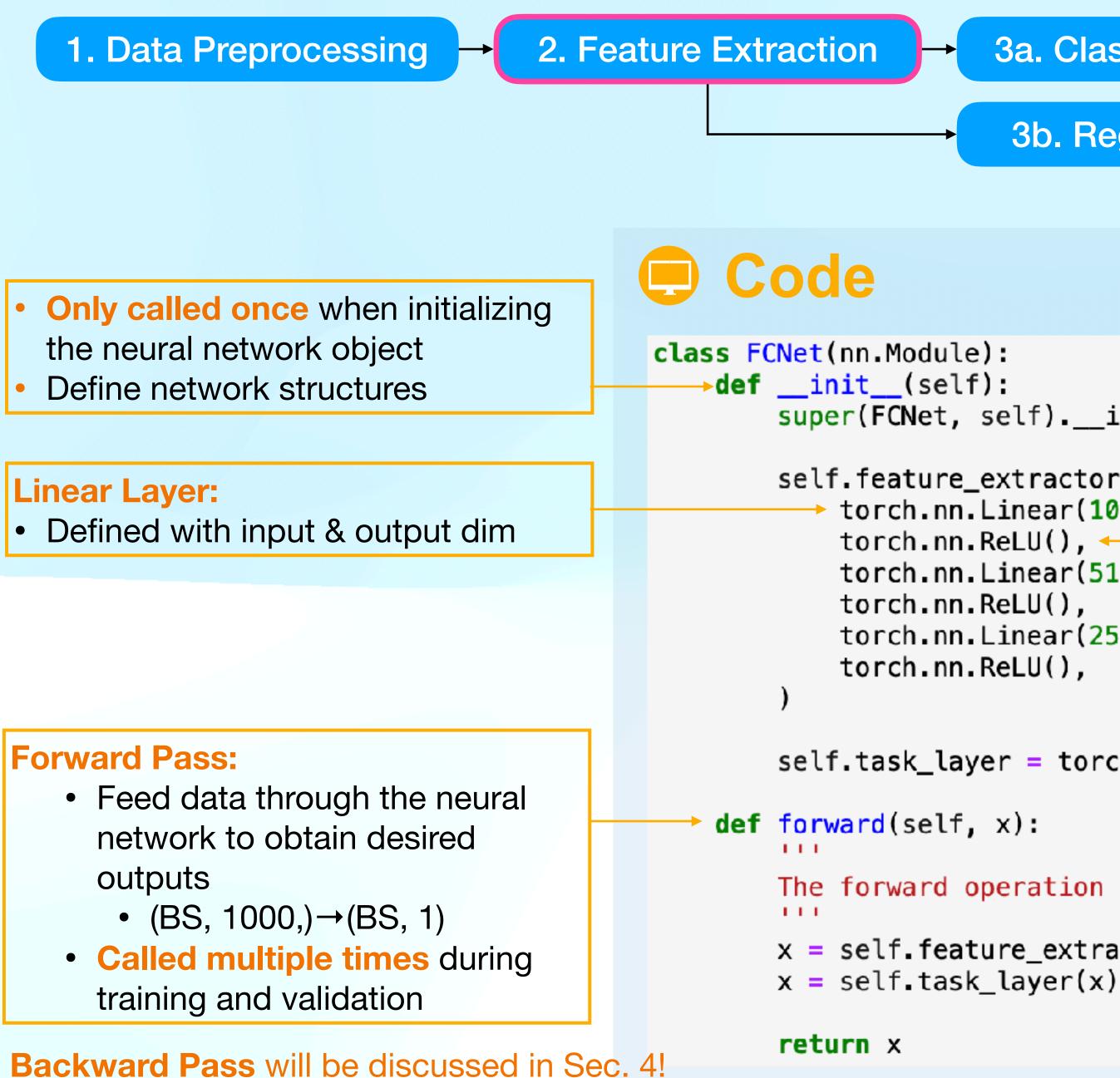


```
3a. Classification
                                           4. Training
                                                                  5. Evaluation
               3b. Regression
super(FCNet, self).__init__()
self.feature_extractor = nn.Sequential(
                                                 Activation Function:
    torch.nn.Linear(1000, 512),

    Adding non-linearity to NN

    torch.nn.Linear(512, 256),
                                                    • ReLU is most commonly used
    torch.nn.Linear(256, 32),
self.task_layer = torch.nn.Linear(32, 1)
The forward operation of each training step
                                                   -3
                                                        -2
                                                             -1
                                                                             2
                                                                   0
x = self.feature_extractor(x)
```

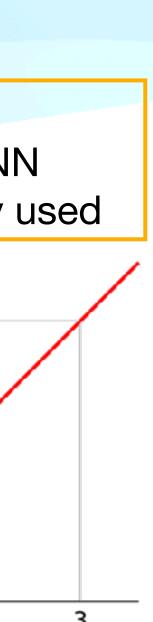



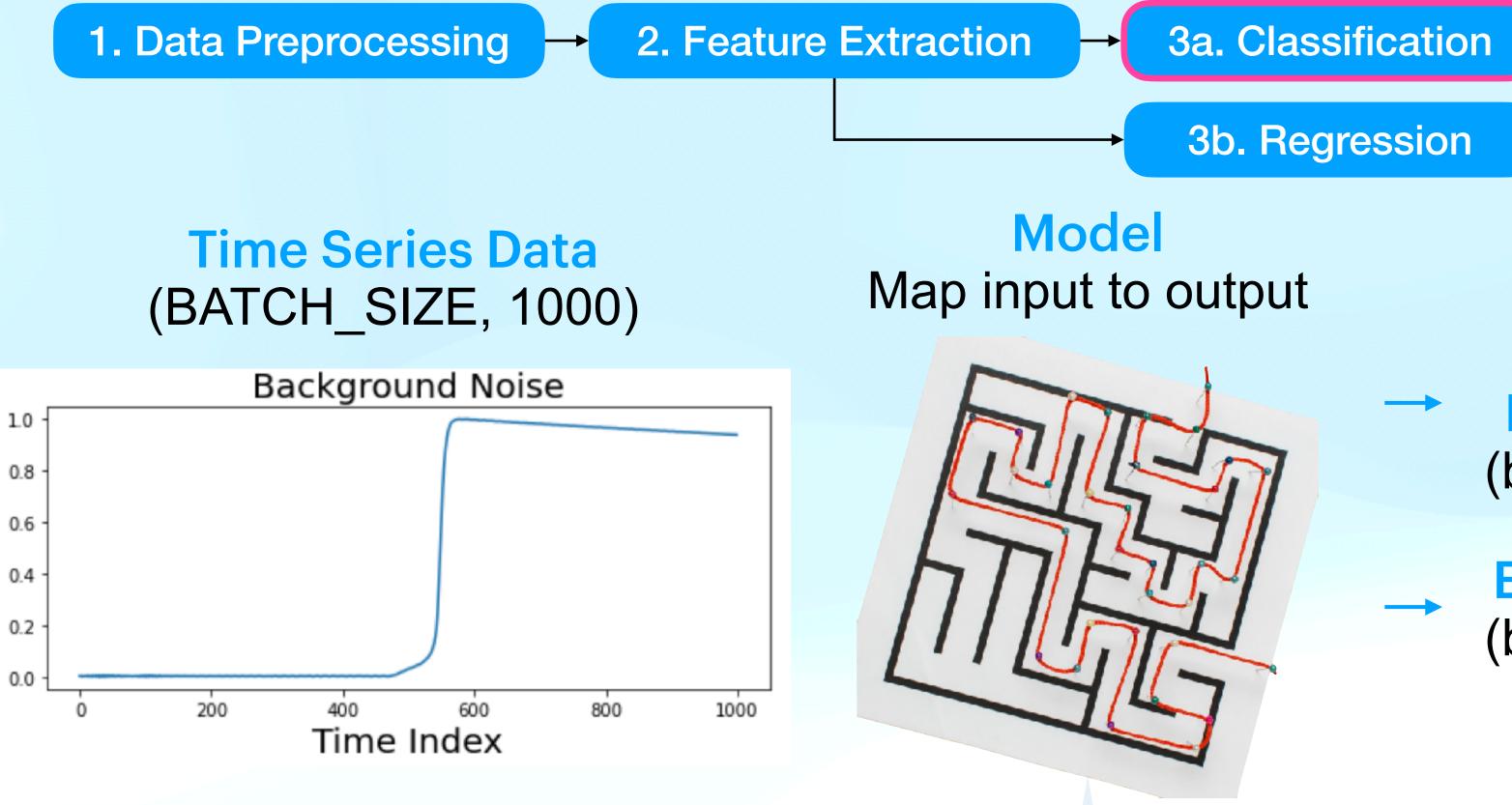


```
3a. Classification
                                           4. Training
                                                                  5. Evaluation
               3b. Regression
super(FCNet, self).__init__()
self.feature_extractor = nn.Sequential(
                                                 Activation Function:
    torch.nn.Linear(1000, 512),

    Adding non-linearity to NN

    torch.nn.Linear(512, 256),
                                                     • ReLU is most commonly used
    torch.nn.Linear(256, 32),
self.task_layer = torch.nn.Linear(32, 1)
The forward operation of each training step
                                                         -2
                                                    -3
                                                              ^{-1}
                                                                              2
x = self.feature_extractor(x)
```



O Concept **Feature Extractor** Network

Take raw data as the input and output a low-dimensional vector NNLayer(1000,

 $\rightarrow NNLayer(512)$

 \rightarrow NNLayer(256, \rightarrow NNLayer(32,

4. Training

Signal or Background (batch_size, 1)

Event Energy (batch_size, 1)

energy_label (batch_size, 1)

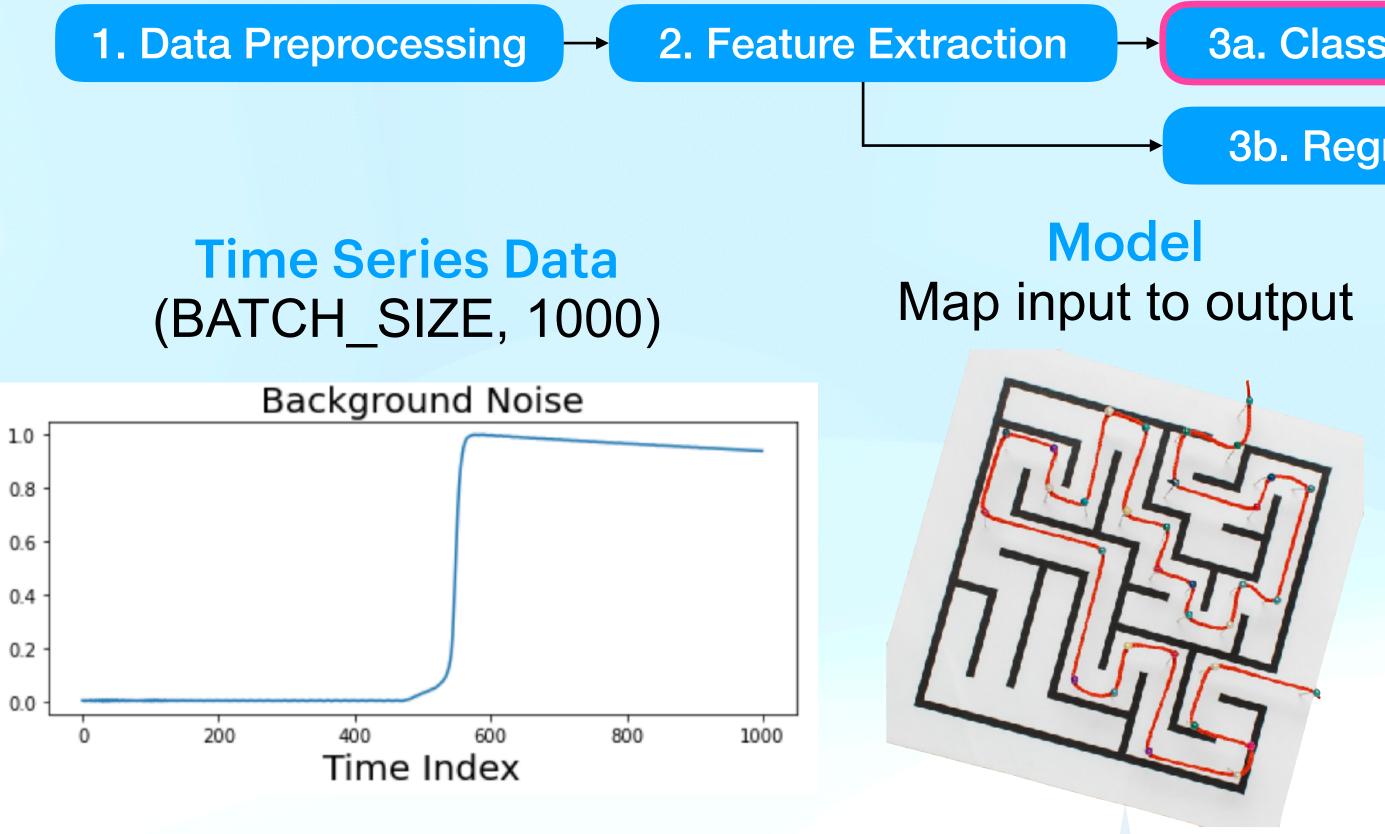
$$512) \rightarrow \sigma$$

$$2, 256) \rightarrow \sigma$$

$$32) \rightarrow \sigma$$

$$2, 1) \rightarrow \sigma$$

18



O Concept **Feature Extractor** Network

Take raw data as the input and output a low-dimensional vector NNLayer(1000,512) $\rightarrow \sigma$

 \rightarrow NNLayer(512, 256) $\rightarrow \sigma$

3a. Classification

4. Training

5. Evaluation

3b. Regression

Signal or Background (batch size, 1)

Event Energy

(batch size, 1)

energy_label (batch size, 1)

O Concept

Task Module: Task Layer + Loss Function

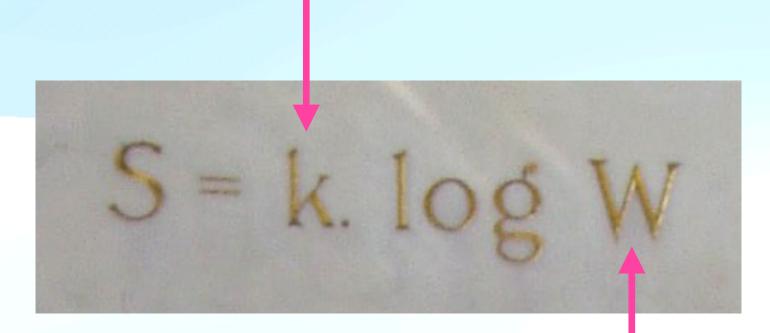
- Task Layer: Take low-dimensional vector as input and produce a value/vector as **output**
- Loss Function: produce a quantitative measure evaluating how well your algorithm models your dataset
- Minimizing the loss function means that the model output reproduces the label better

 \rightarrow NNLayer(256, 32) $\rightarrow \sigma$ \rightarrow NNLayer(32, 1) $\rightarrow \sigma$

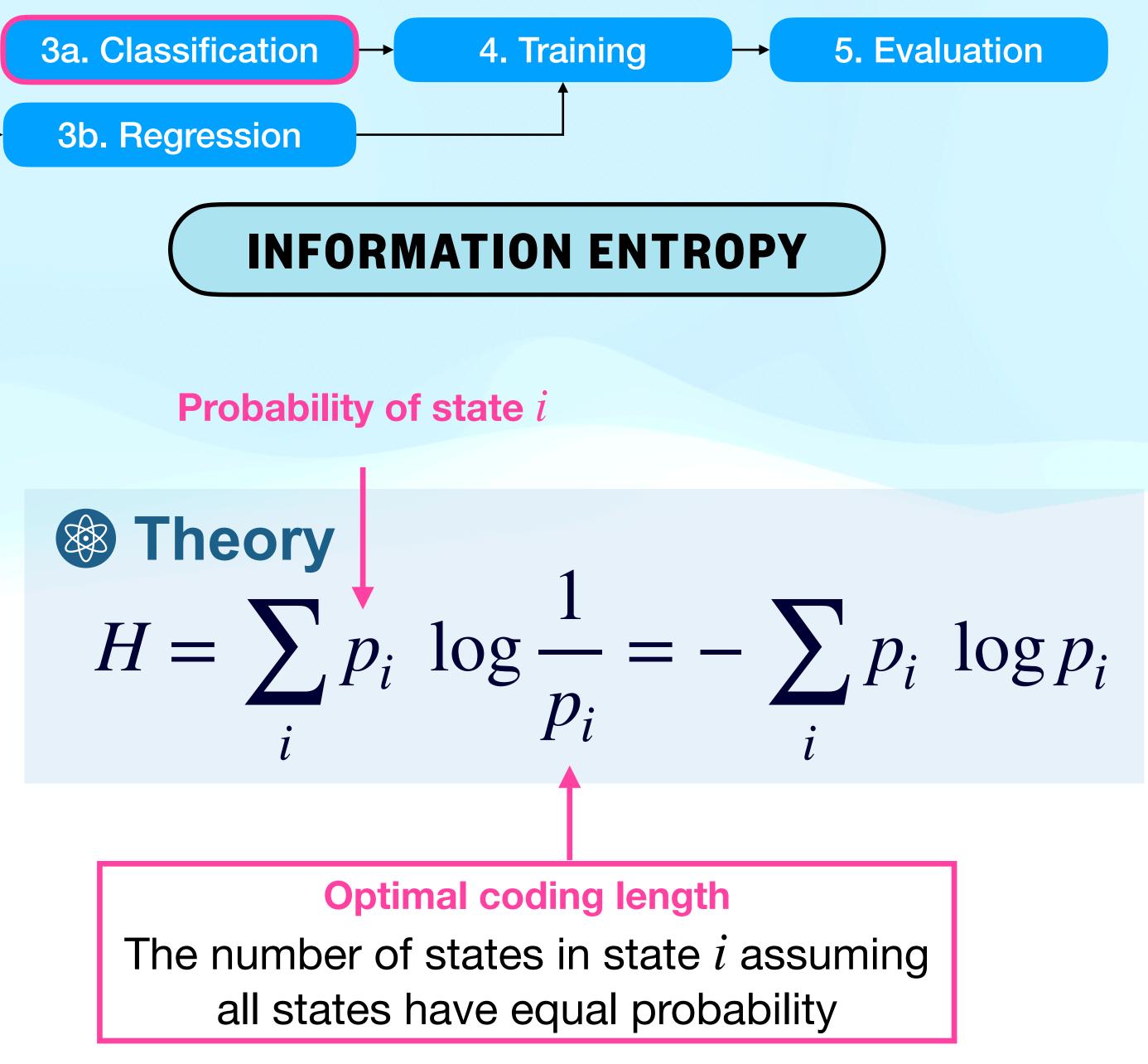
2. Feature Extraction

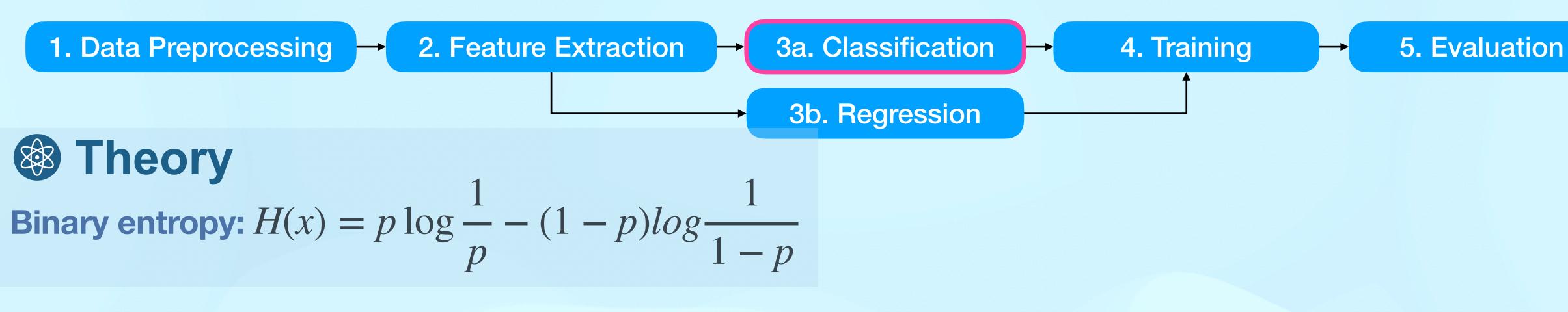
BOLTZMANN ENTROPY

Boltzmann's Constant



The number of real microstates corresponding to the gas's macrostate





Theory Binary entropy: $H(x) = p \log \frac{1}{p} - (1-p) \log \frac{1}{1-p}$

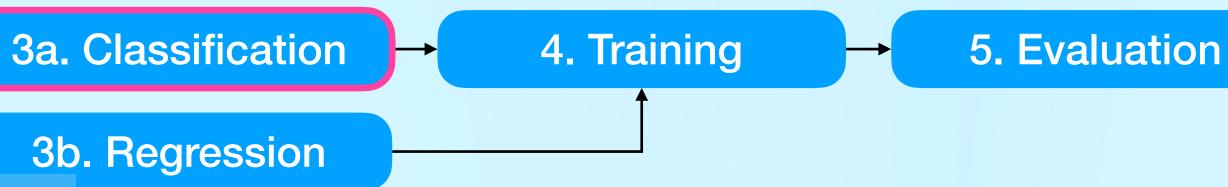
Suppose we are tossing a **fair coin**:

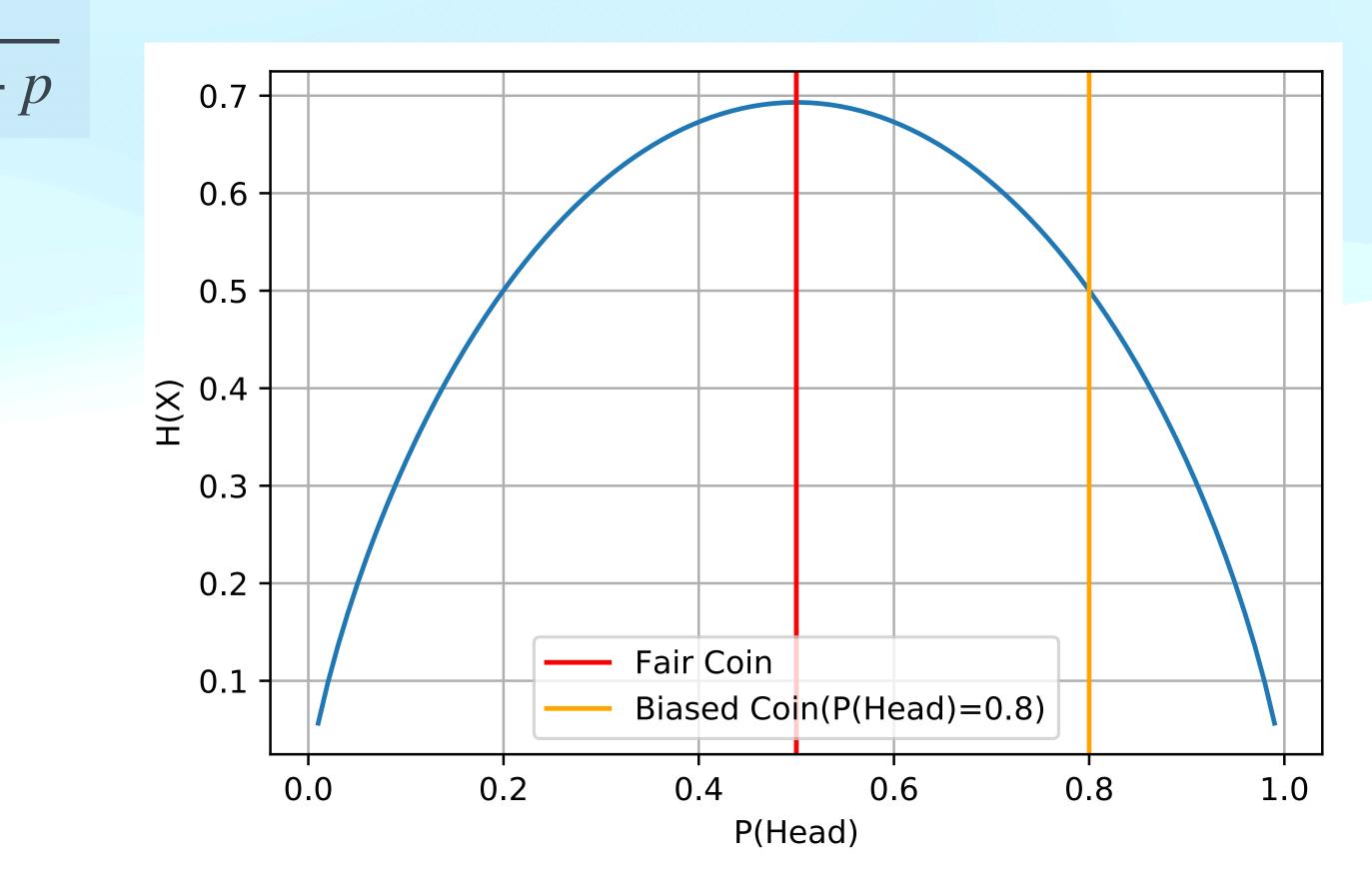
• That is, the probability of head (H) and tail (T) are equal

•
$$H(X) = \frac{1}{2} log \frac{1}{1/2} + \frac{1}{2} log \frac{1}{1/2} = log 2 \approx 0.6931$$

Suppose we have an **unfair coin** where P(Head) = 0.8:

•
$$H(X) = 0.8 \log \frac{1}{0.8} + 0.2 \log \frac{1}{0.2} \approx 0.5$$





Theory Binary entropy: $H(x) = p \log \frac{1}{p} - (1-p) \log \frac{1}{1-p}$

Suppose we are tossing a **fair coin**:

That is, the probability of head (H) and tail (T) are equal

•
$$H(X) = \frac{1}{2}log\frac{1}{1/2} + \frac{1}{2}log\frac{1}{1/2} = log2 \approx 0.6931$$

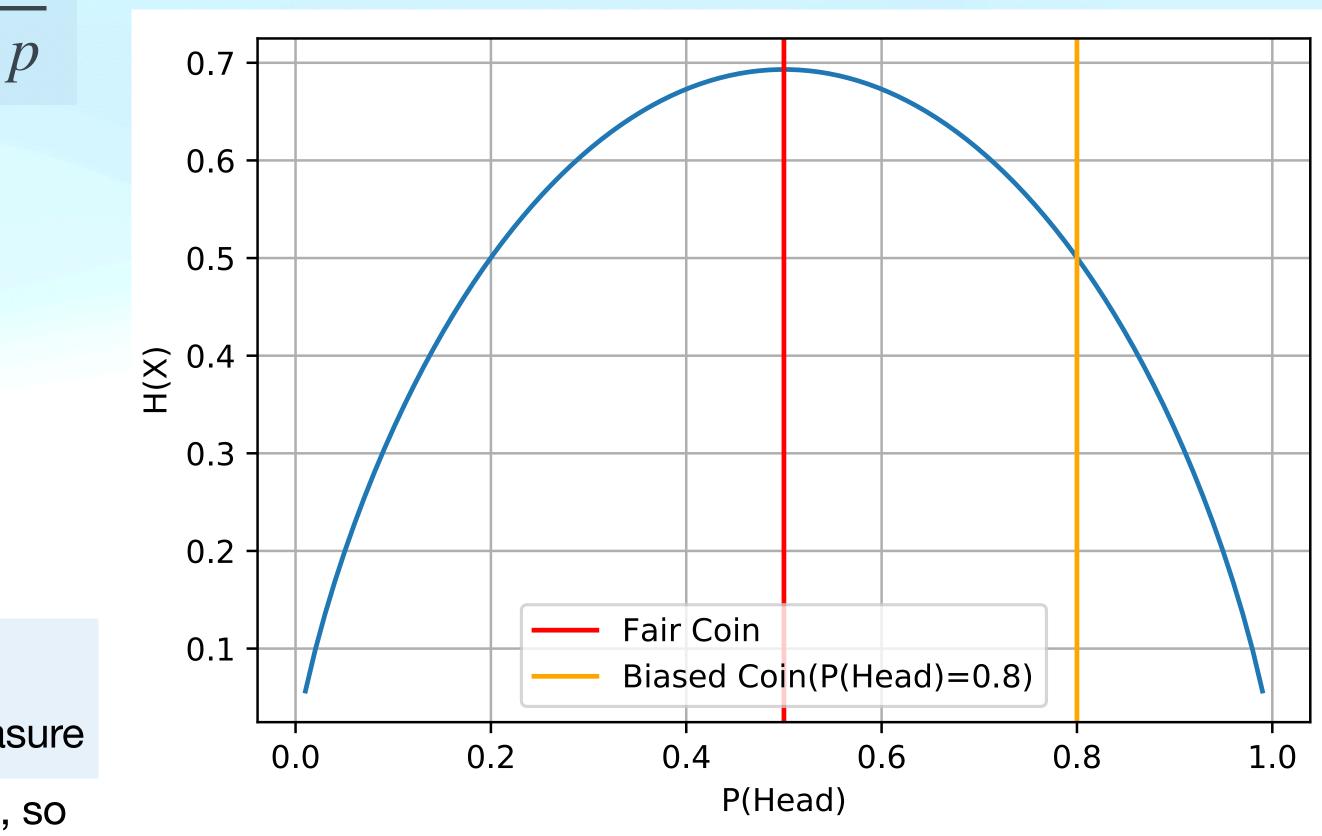
Suppose we have an **unfair coin** where P(Head) = 0.8:

•
$$H(X) = 0.8 \log \frac{1}{0.8} + 0.2 \log \frac{1}{0.2} \approx 0.5$$

O Concept

Information entropy is the average amount of surprise we measure

- For a fair coin, it is hard to predict the outcome of next toss, so the average surprisal is **high** and thus **high entropy**
- For a unfair coin, the next outcome is likely to be a head, so the average surprisal is **low** and thus **low entropy**

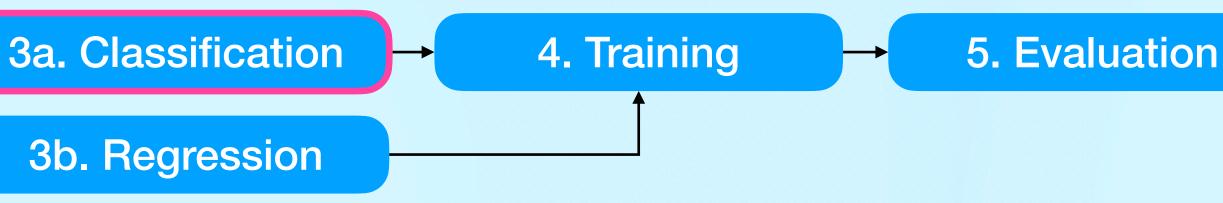


20

Theory Cross Entropy H(p,q) is calculated over two distributions p(X) and q(X):

H(p,q) =

- The ground truth distribution p(X) follows the distribution of labels
- produce an output distribution q(X)



$$\sum p(X) log \frac{1}{q(X)}$$

Suppose we have a classification task to separate neutrino signals from backgrounds

On the other hand, we build up a neural network, which analyze every single waveform to

Theory **Cross Entropy** H(p,q) is calculated over two distributions p(X) and q(X):

H(p,q) =

- Suppose we have a classification task to separate neutrino signals from backgrounds
- The ground truth distribution p(X) follows the distribution of labels
- produce an output distribution q(X)

oncept **Binary Cross Entropy:** label is either 1 or 0 $H = -\left[p \cdot \log(q) + (1-p) \cdot \log(1-q)\right]$

$$\sum p(X) log \frac{1}{q(X)}$$

On the other hand, we build up a neural network, which analyze every single waveform to

Concept **Cross Entropy:** label contains n classes $H = -\sum \vec{p} \cdot log(\vec{q})$ $\vec{p} = \{1, 0, 0...0\}$

→

Information Entropy measures the average amount of surprise

Information Entropy measures the average amount of surprise

 \rightarrow

given that the ground truth distribution follows p(X)

Cross Entropy measure the average amount of surprise from network output distribution q(X),

Information Entropy measures the average amount of surprise

 \rightarrow

given that the ground truth distribution follows p(X)

Cross Entropy measure the average amount of surprise from **network output distribution** q(X),

Information Entropy measures the average amount of surprise

given that the ground truth distribution follows p(X)

O Concept

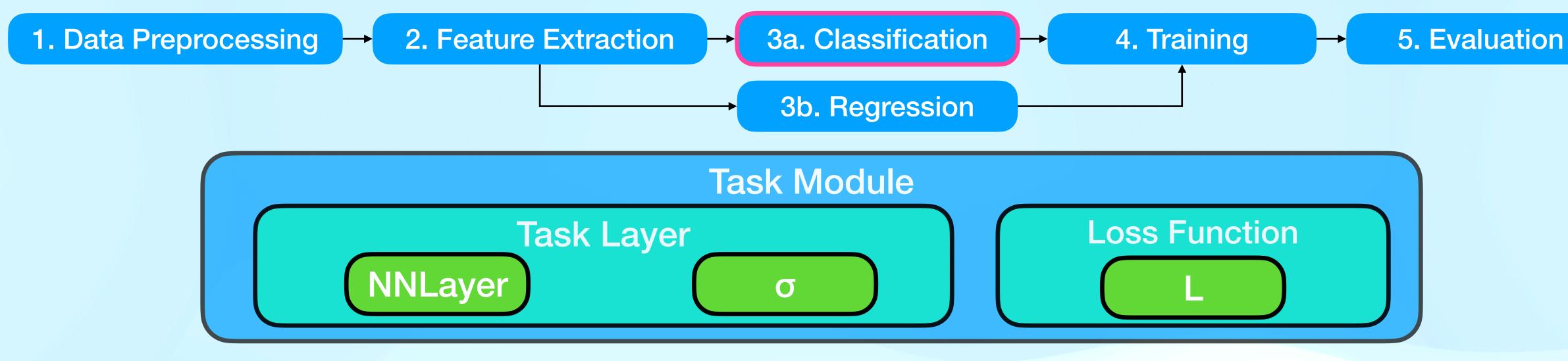
with respect to the ground truth label

- When $p(Waveform) = Neutrino, q(Waveform) \rightarrow Neutrino$
- When $p(Waveform) = Background, q(Waveform) \rightarrow Background$

Cross Entropy measure the average amount of surprise from **network output distribution** q(X),

Cross Entropy Loss: Minimize Cross Entropy is identical to minimizing the surprise of NN output

- Lower Cross Entropy loss means better separation between neutrino signal and background



Task Layer: NNLayer(32, 1) \rightarrow One float point No. between [-inf, inf]

- After training, it can be onsidered as a "classification score":
 - Higher score means the answer is more likely "yes"
 - Lower score means the answer is more likely "no"
 - A threshold is need to distinguish "yes" from "no"

o: torch.sigmoid(x)

• Sigmoid function $\sigma(x) = 1/(1 + e^x)$ maps input from [-inf, inf] to [0,1]

Loss Function: torch.nn.BCELoss()

- Input: has to be a number between [0,1]
- Target: has to be either 0 or 1, cannot be other number

O Concept Binary Classification 2

Task Layer: NNLayer(32, 1) \rightarrow One float point No. between [-inf, inf]

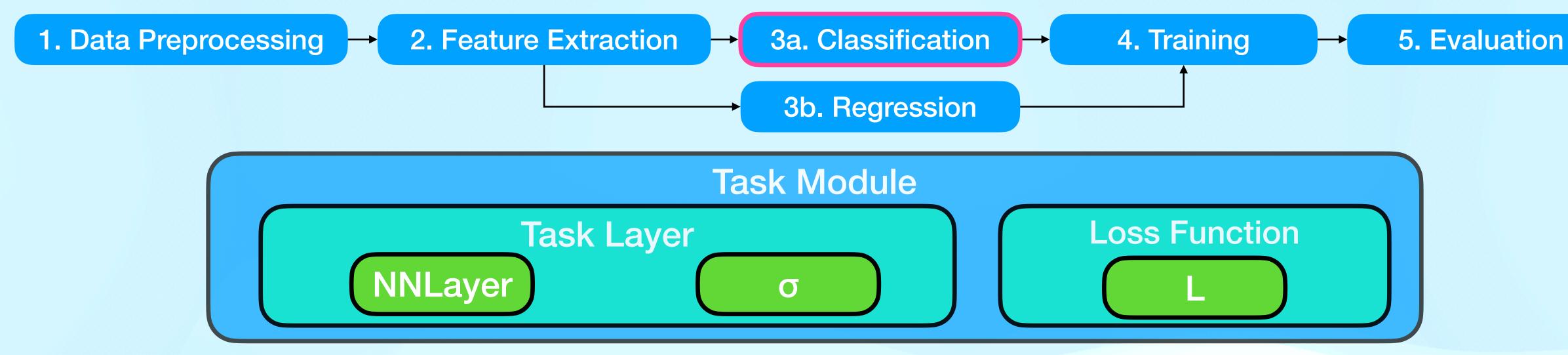
After training, it can be onsidered as a "classification score":

- Higher score means the answer is more likely "yes"
- Lower score means the answer is more likely "no"
- A threshold is need to distinguish "yes" from "no"

σ: <u>None</u>

Loss Function: torch.nn.BCEWithLogitsLoss()

- Input: any range between [-inf, inf]
- Target: has to be either 0 or 1, cannot be other number



Task Layer: NNLayer(32, 2) \rightarrow two float point No. between [-inf, inf]

- After training, it can be considered as a "classification decision":
 - Assign meaning to the two numbers (1st yes, 2nd no)
 - The larger number of the two represents the one we select
 - No threshold needed
- **o:** None

Loss Function: torch.nn.CrossEntropyLoss()

- Input: array of size 2 with two number between [-inf, inf]
- Target: the array indices of correct choice

Concept **Multiclass Classification**

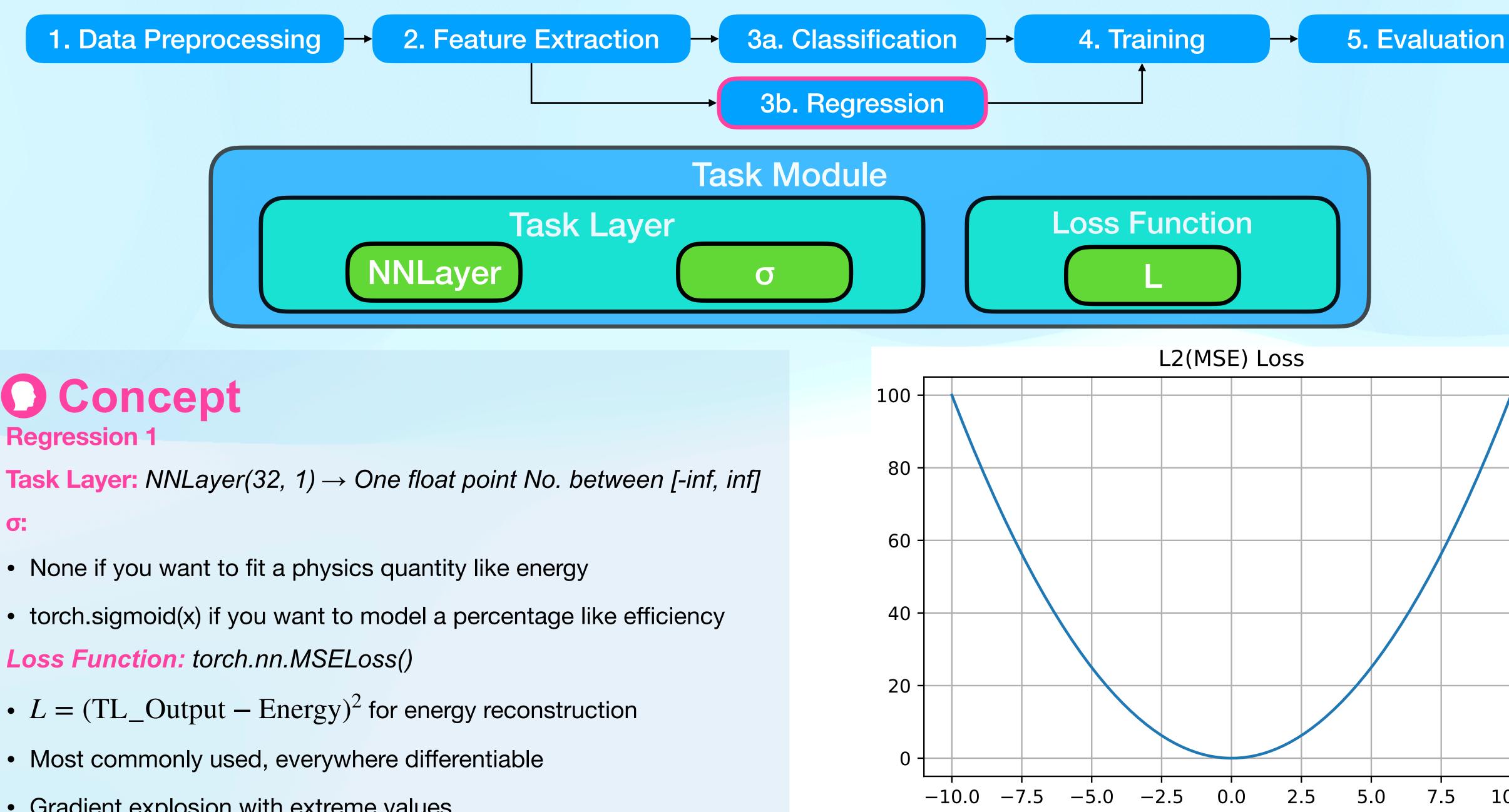
Task Layer: NNLayer(32, <u>n</u>) \rightarrow n float point No. between [-inf, inf]

- After training, it can be considered as a "classification decision"
 - Assign meaning to the each numbers (1st C1, 2nd C2, 3rd C3,)
 - The largest number represents the one we select
 - No threshold needed

o: None

Loss Function: torch.nn.CrossEntropyLoss()

- Input: array of size <u>n</u> with two number between [-inf, inf]
- Target: the **array indices** of correct choice

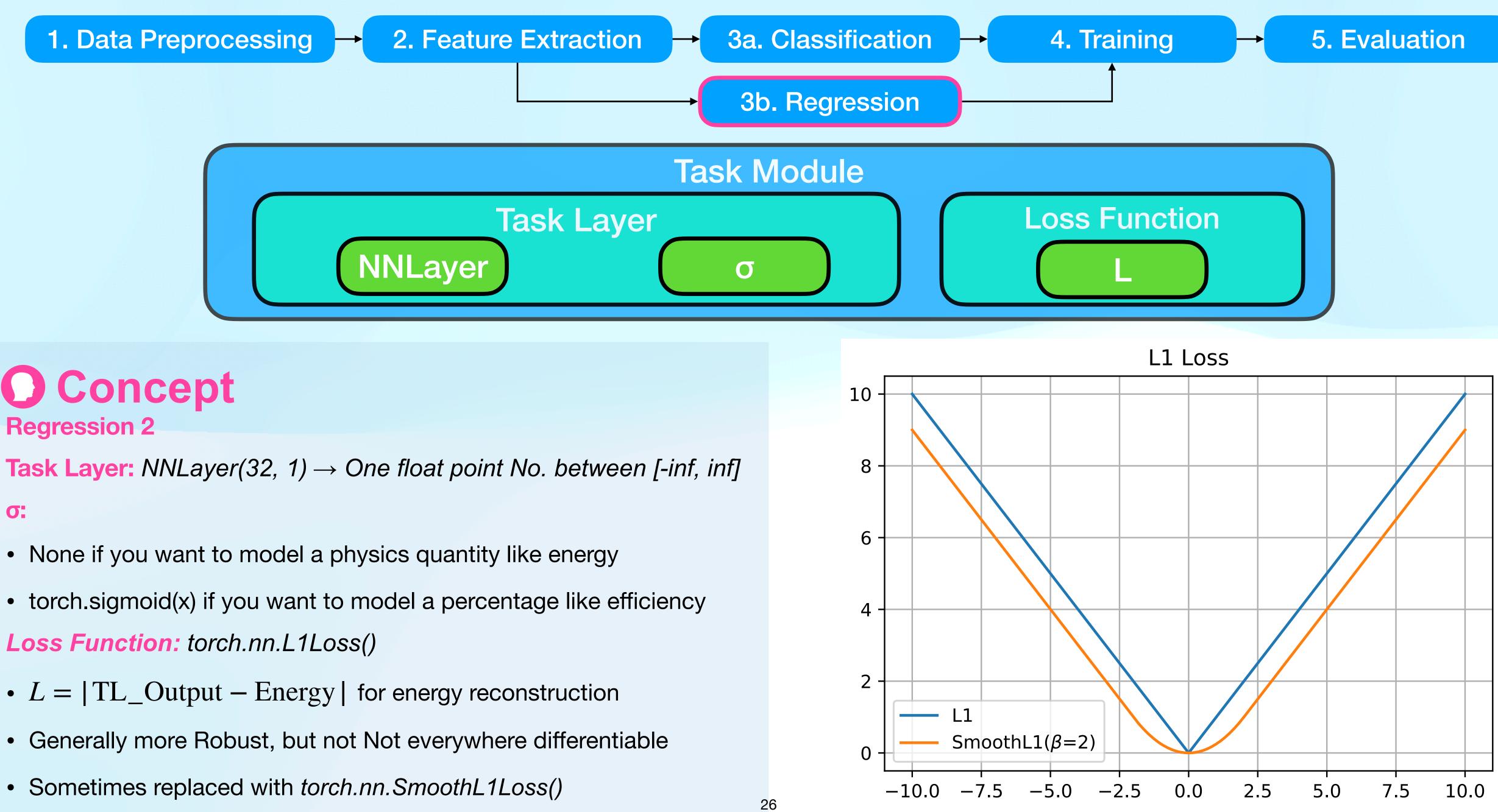


O Concept

σ:

- None if you want to fit a physics quantity like energy
- torch.sigmoid(x) if you want to model a percentage like efficiency
- Most commonly used, everywhere differentiable
- Gradient explosion with extreme values

10.0



O Concept

σ:

- torch.sigmoid(x) if you want to model a percentage like efficiency **Loss Function:** torch.nn.L1Loss()
- Generally more Robust, but not Not everywhere differentiable
- Sometimes replaced with torch.nn.SmoothL1Loss()

1. Data Preprocessing

 \rightarrow

2. Feature Extraction

Code

class FCNet(nn.Module): def __init__(self): super(FCNet, self).__init__()

def forward(self, x):

1.1.1

x = self.feature_extractor(x) x = self.task_layer(x) #x = torch.sigmoid(x)

return x

criterion = torch.nn.L1Loss()

```
for i, (waveform, label, energy) in tqdm(enumerate(train_loader)):
   #Pull out 1 event from the dataset
    outputs = regressor (waveform)
    loss = criterion(outputs, energy)
```



```
self.feature_extractor = #Already Discussed
```

```
self.task_layer = torch.nn.Linear(32, 1)
```

```
The forward operation of each training step of the neural
```

```
regressor = FCNet() # Change here to try different networks
```

1. Data Preprocessing

2. Feature Extraction

Task Layer: output one float point number

Code

class FCNet(nn.Module): def __init__(self): super(FCNet, self).__init__()

def forward(self, x):

1.1.1

x = self.feature_extractor(x) x = self.task_layer(x) #x = torch.sigmoid(x)

return x

criterion = torch.nn.L1Loss()

#Pull out 1 event from the dataset outputs = regressor (waveform) loss = criterion(outputs, energy)



```
self.feature_extractor = #Already Discussed
```

```
self.task_layer = torch.nn.Linear(32, 1)
```

```
The forward operation of each training step of the neural
```

```
regressor = FCNet() # Change here to try different networks
```

```
for i, (waveform, label, energy) in tqdm(enumerate(train_loader)):
```

1. Data Preprocessing

2. Feature Extraction

Task Layer: output one float point number

σ: activation function, None for energy regression task since energy could be any values

Code

class FCNet(nn.Module): def __init__(self): super(FCNet, self).__init__()

def forward(self, x):

1.1.1

x = self.feature_extractor(x) x = self.task_layer(x)

#x = torch.sigmoid(x)

return x

criterion = torch.nn.L1Loss()

#Pull out 1 event from the dataset outputs = regressor (waveform) loss = criterion(outputs, energy)



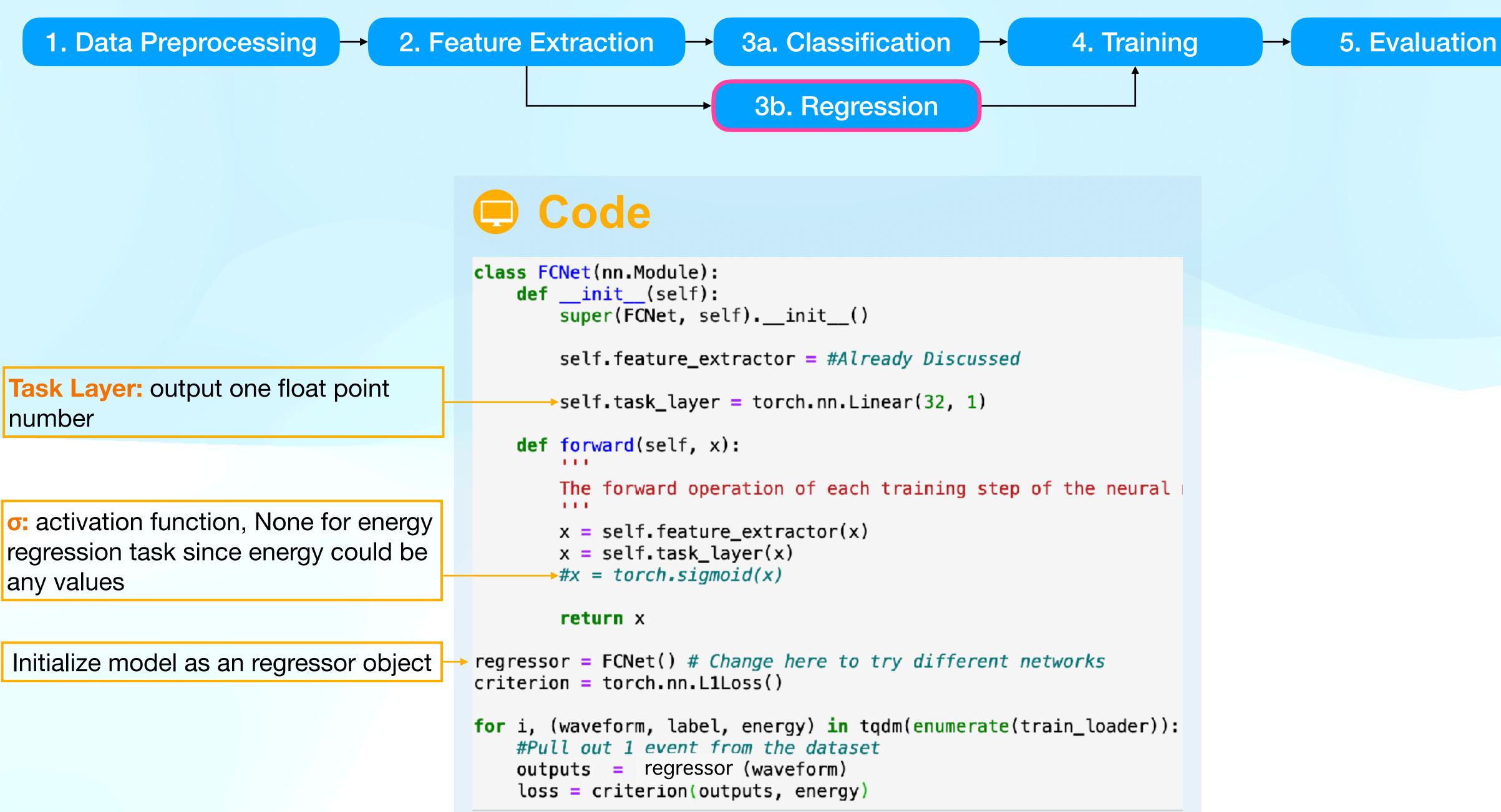
```
self.feature_extractor = #Already Discussed
```

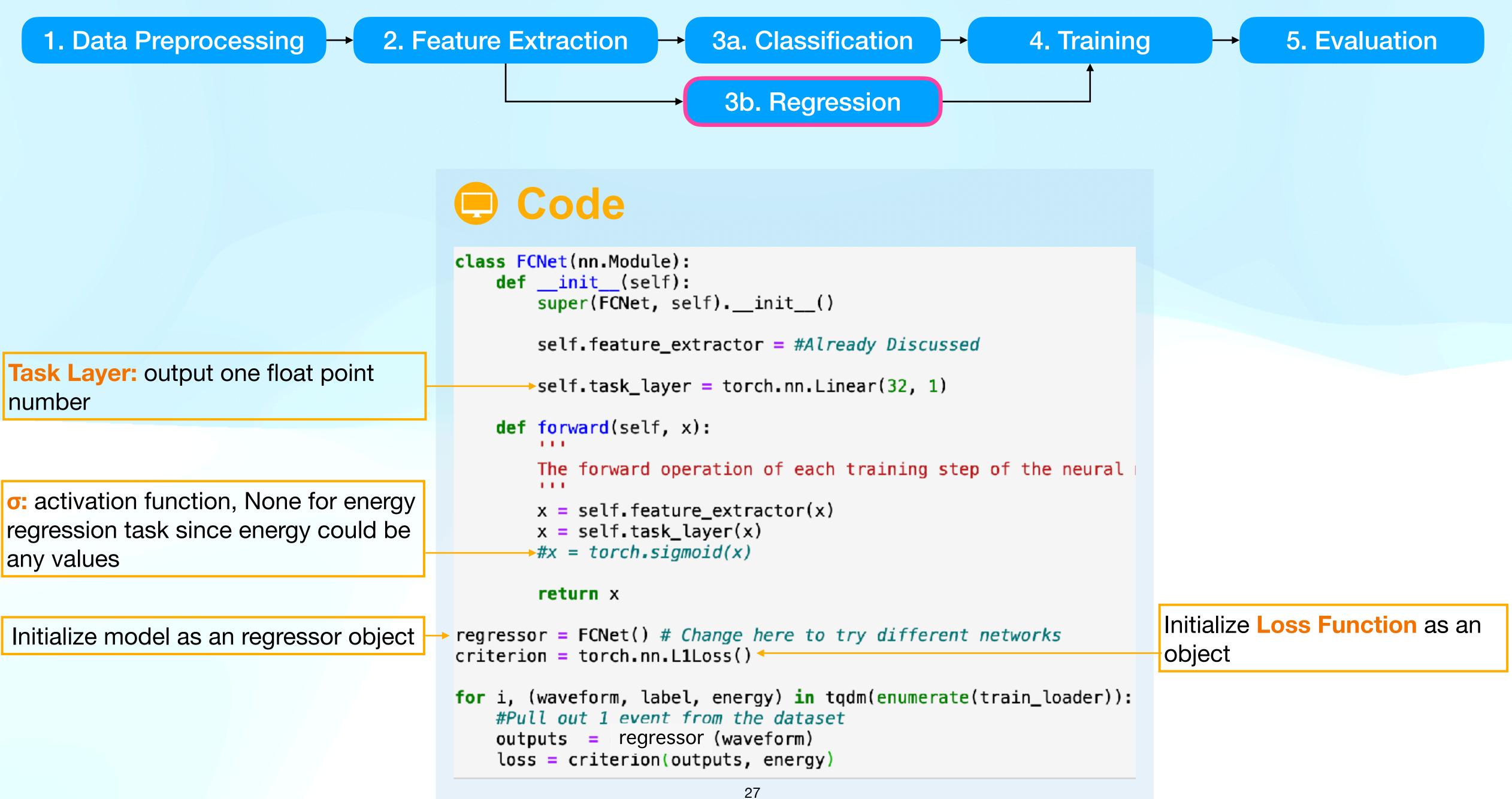
```
self.task_layer = torch.nn.Linear(32, 1)
```

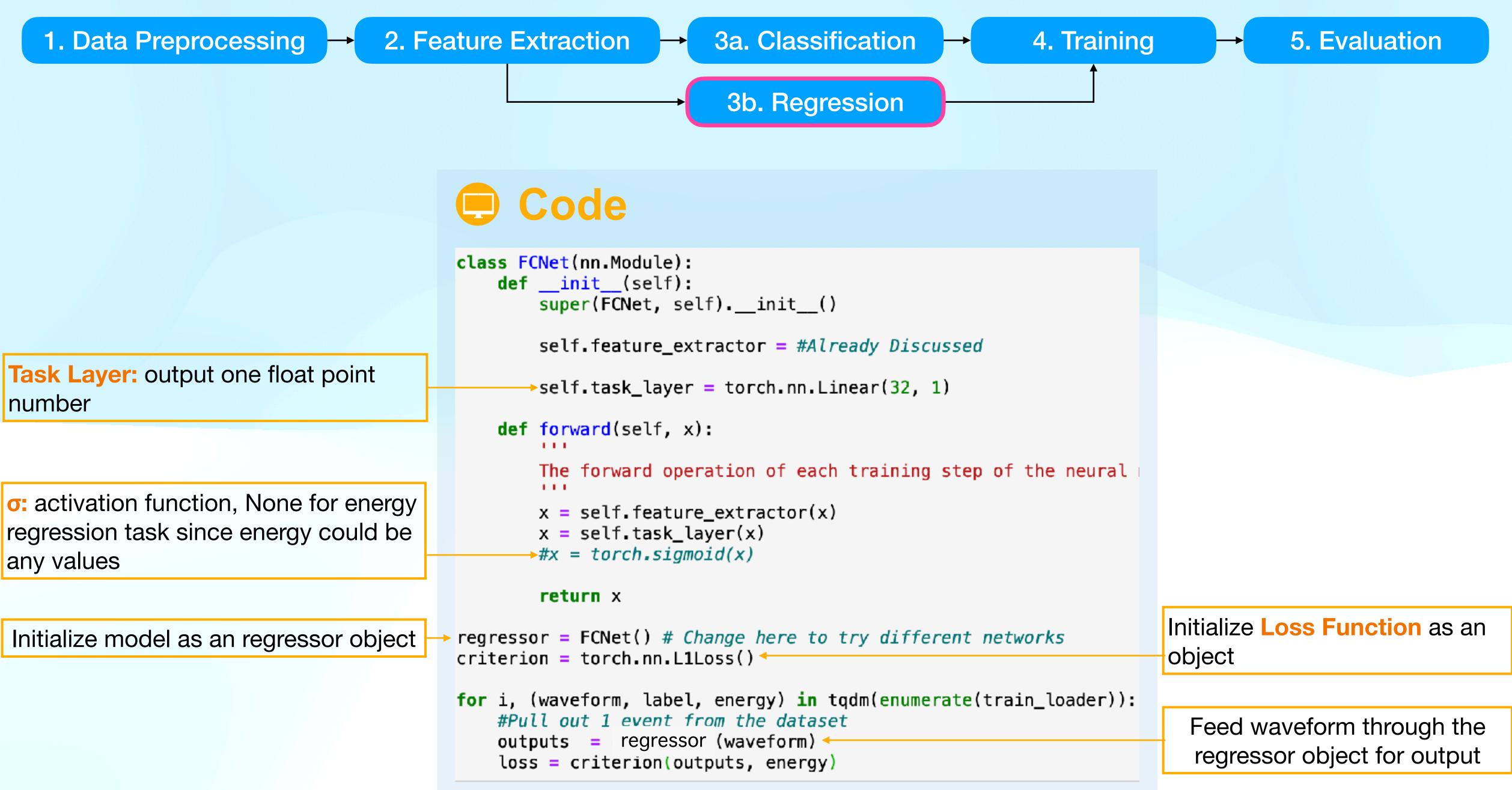
```
The forward operation of each training step of the neural
```

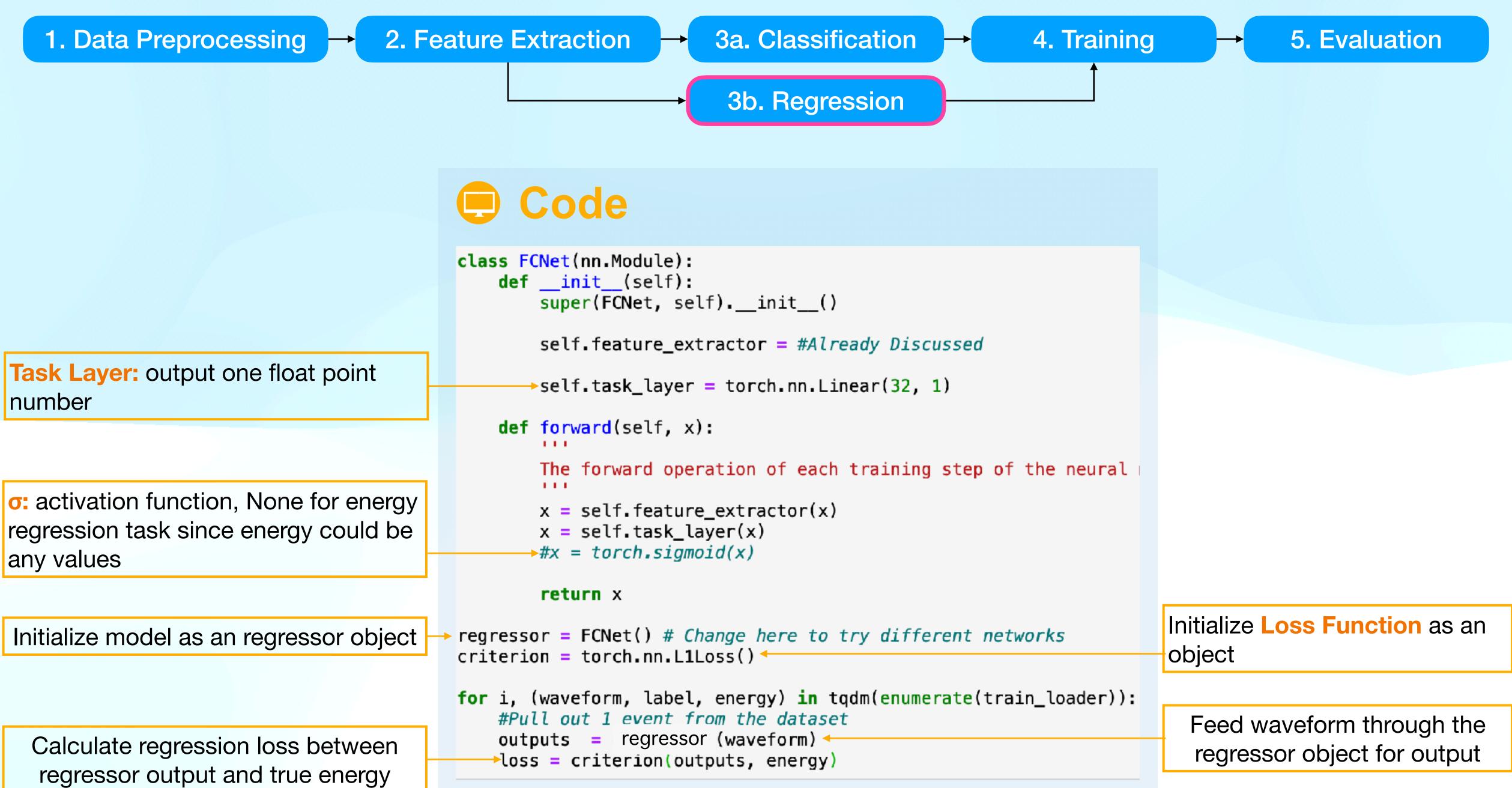
```
regressor = FCNet() # Change here to try different networks
```

```
for i, (waveform, label, energy) in tqdm(enumerate(train_loader)):
```







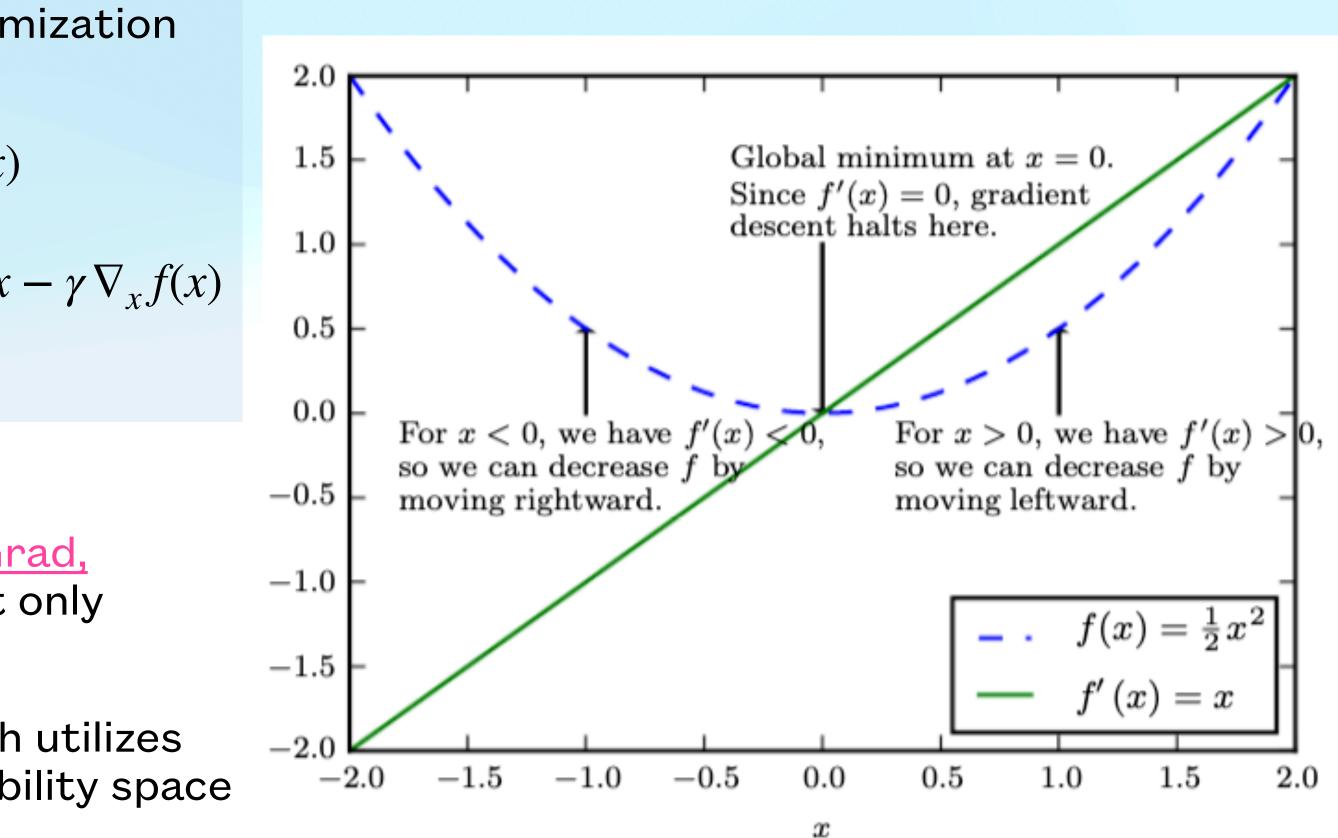


1. Data Preprocessing → 2. Feature Extraction →

O Concept

- Training of neural network is a gradient descent optimization process:
 - To find $\operatorname*{argmax}_x f(x)$, we calculate the gradient $\nabla_x f(x)$
 - Moving x in the opposite direction of gradient: $x' = x \gamma \nabla_x f(x)$
 - γ is the **learning rate** of gradient descent
- Mainstream machine learning optimizers <u>Adam, AdaGrad</u>, <u>RMSprop</u> are first order optimization algorithms that only utilize gradient
- There are second order optimization algorithms which utilizes the Hessian matrix to avoid poorly conditioned probability space

•
$$f(x^{(0)} - \gamma g) = f(x^{(0)}) - \gamma g^T g + \frac{1}{2} \gamma^2 g^T H g$$



Expression of Neural Network:

• One Layer: $\hat{y} = \sigma(\alpha_m^T \vec{x}^i + \alpha_{0m})$

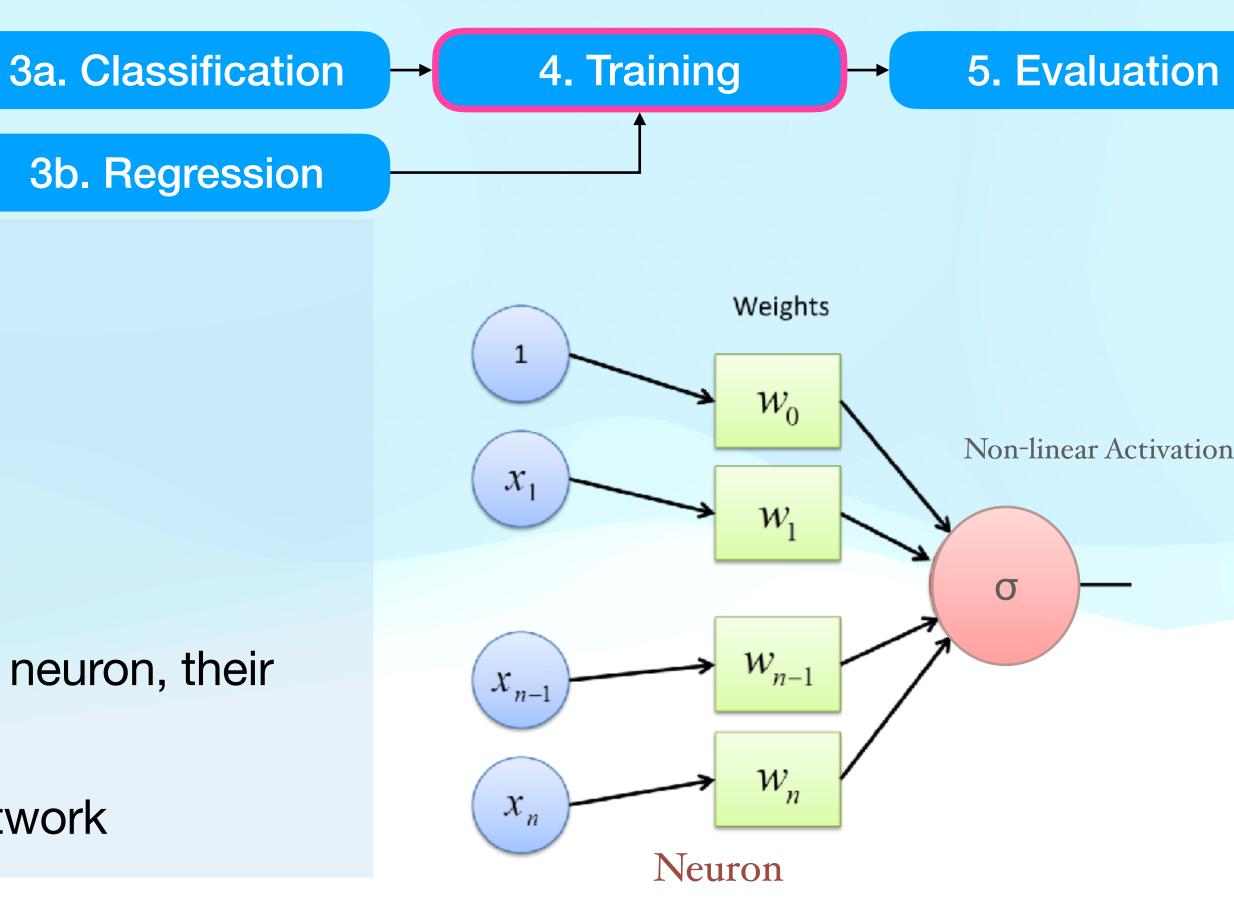
• Two Layer:
$$\hat{y} = \sigma_2(\beta_k^T \sigma(\alpha_m^T \vec{x}^i + \alpha_{0m}) + \beta_{0k})$$

- (α_m^T, β_k^T) are the weight matrices of the (m^{th}, k^{th}) neuron, their values change during the training
- (α_m^T, β_k^T) is also defined as the **kernel** of neural network

Training NN = Optimizing kernel parameters (α_m^T, β_k^T) with respect to the loss function

• Calculating the gradient $\nabla_{\alpha,\beta} L(x, y \mid \alpha, \beta)$ is the key steps

However, the gradient is supposed to be calculated on all input data simultaneously As we increase the size of training data, this becomes computationally impossible

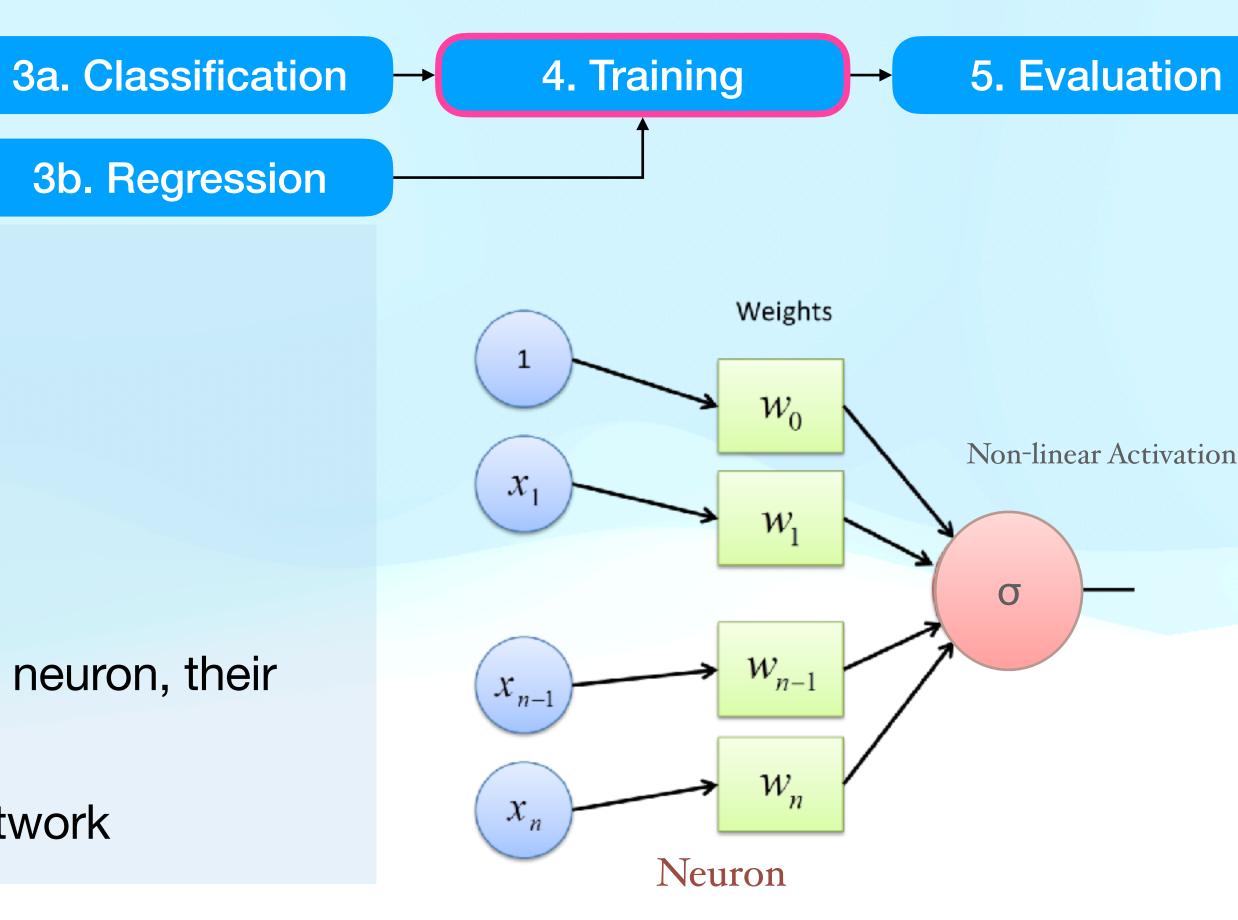


Expression of Neural Network:

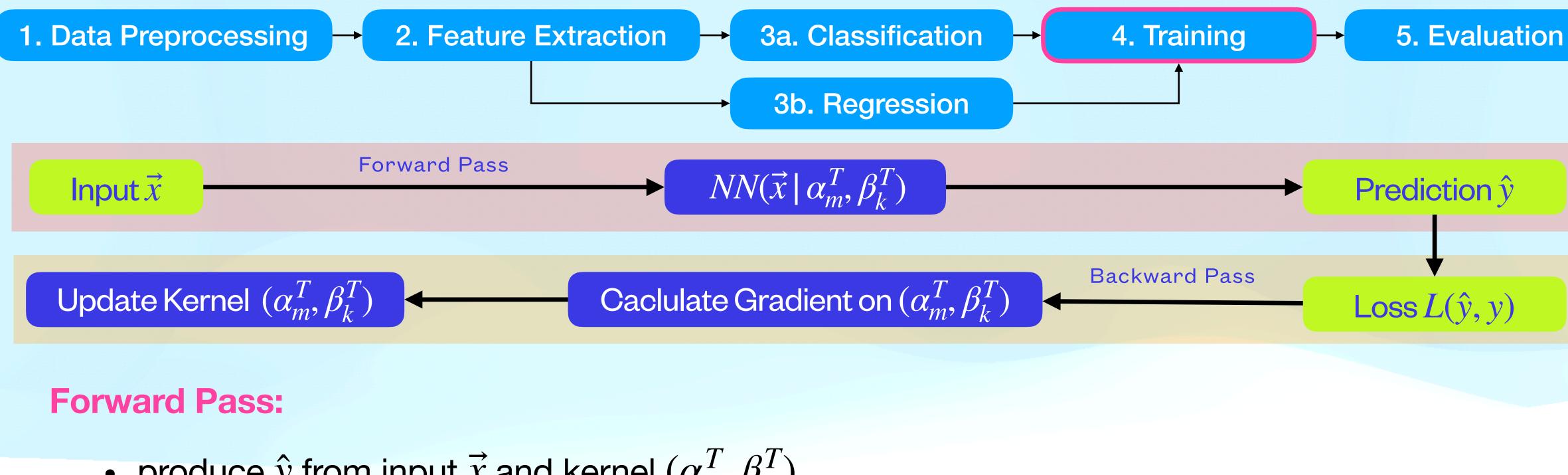
- One Layer: $\hat{y} = \sigma(\alpha_m^T \vec{x}^i + \alpha_{0m})$
- Two Layer: $\hat{y} = \sigma_2(\beta_k^T \sigma(\alpha_m^T \vec{x}^i + \alpha_{0m}) + \beta_{0k})$
- (α_m^T, β_k^T) are the weight matrices of the (m^{th}, k^{th}) neuron, their values change during the training
- (α_m^T, β_k^T) is also defined as the **kernel** of neural network

O Concept **Stochastic Gradient Descent (SGD):**

- This will reproduce the effect of training using all • Stochastic: breaks the training data into batches, each batch is randomly sampled from the training dataset data simultaneously
- Size of batch is an important <u>hyperparameter</u> of NN model
- (α_m^I, β_k^I) is updated in a step-wise manner by sequentially feeding each batch into the model



- SGD is possible because gradient is an expectation
- 30



• produce \hat{y} from input \vec{x} and kernel (α_m^T, β_k^T)

O Concept

Backward Pass:

- Calculate loss $L(\hat{y}, y)$
- Calculate the gradient on kernel using back propagation
- Update kernel by gradient descent

$$y = f_L(\dots f_2(f_1(x)))$$

$$\downarrow$$

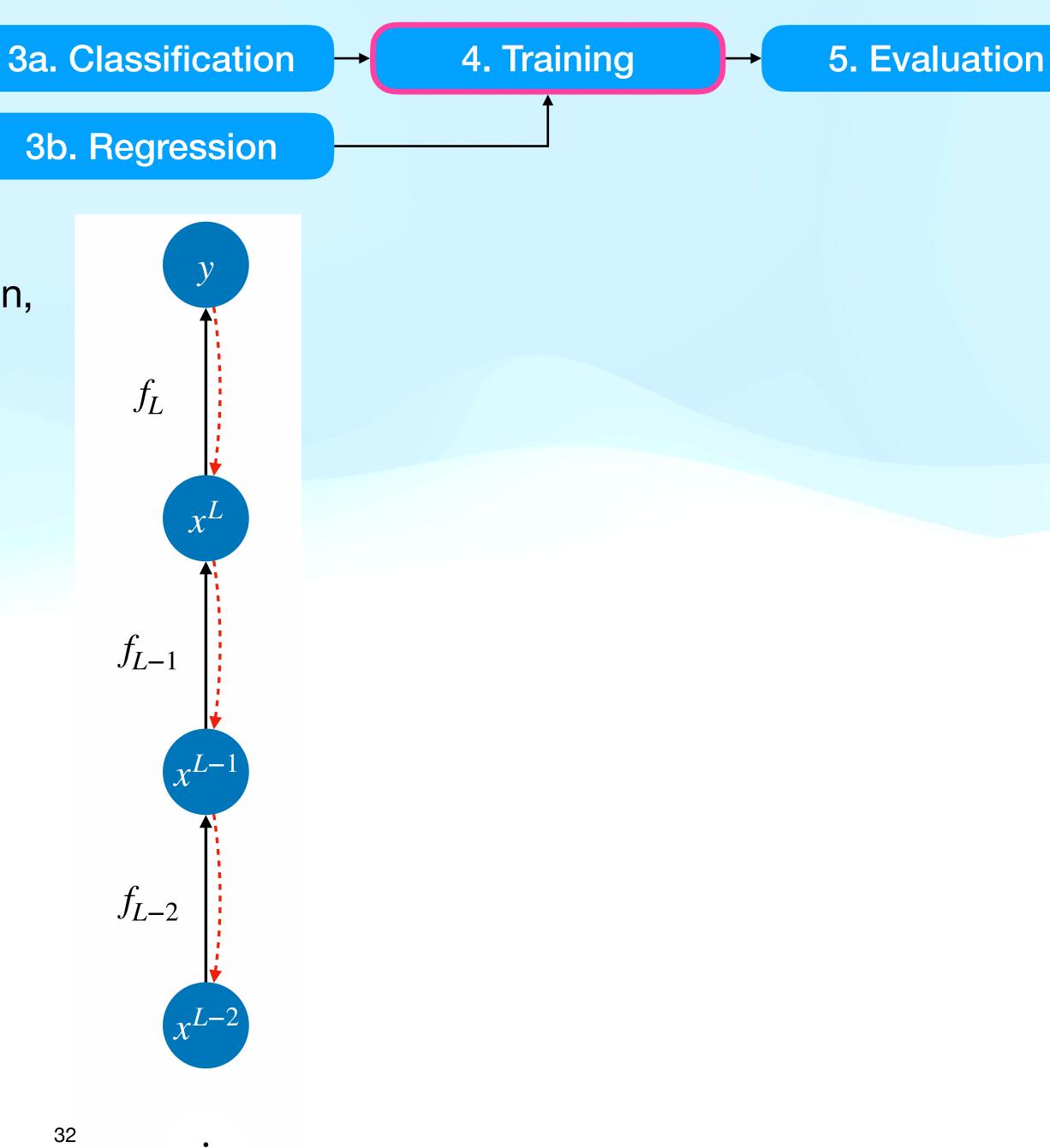
$$y = f_L(x_L)$$

$$X_L = f_{L-1}(x_{L-1})$$

$$\vdots$$

$$X_1 = f_1(x_1)$$

дy We wan to compute $\frac{\partial y}{\partial x_l}$ for $a \notin l \in \{1, l \in L\}$



$$y = f_L(\dots f_2(f_1(x)))$$

$$\downarrow$$

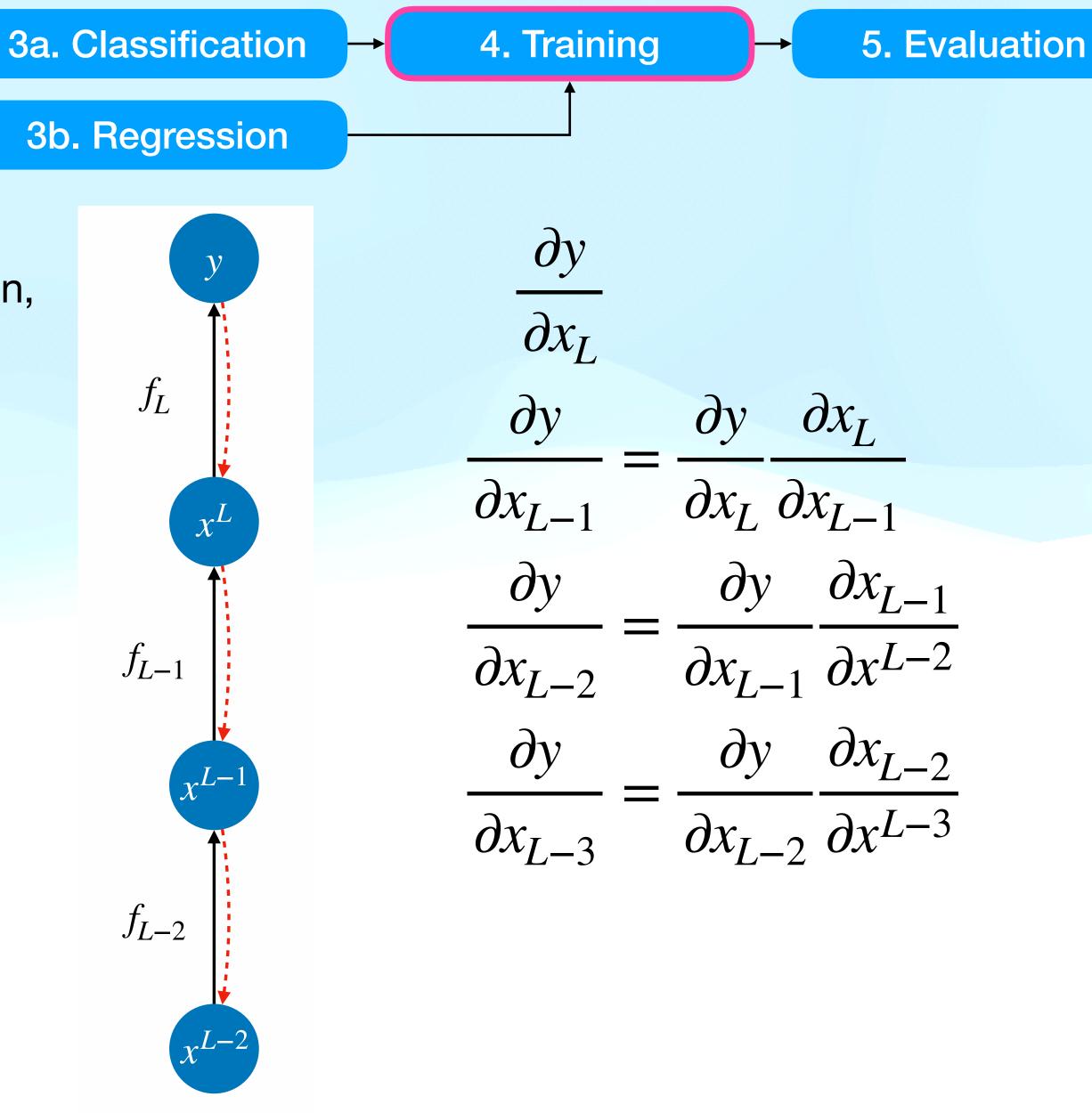
$$y = f_L(x_L)$$

$$X_L = f_{L-1}(x_{L-1})$$

$$\vdots$$

$$X_1 = f_1(x_1)$$

We wan to compute $\frac{\partial y}{\partial x_l}$ for $a \notin J \in \{1, l, \notin L\}$ дy



$$y = f_L(\dots f_2(f_1(x)))$$

$$\downarrow$$

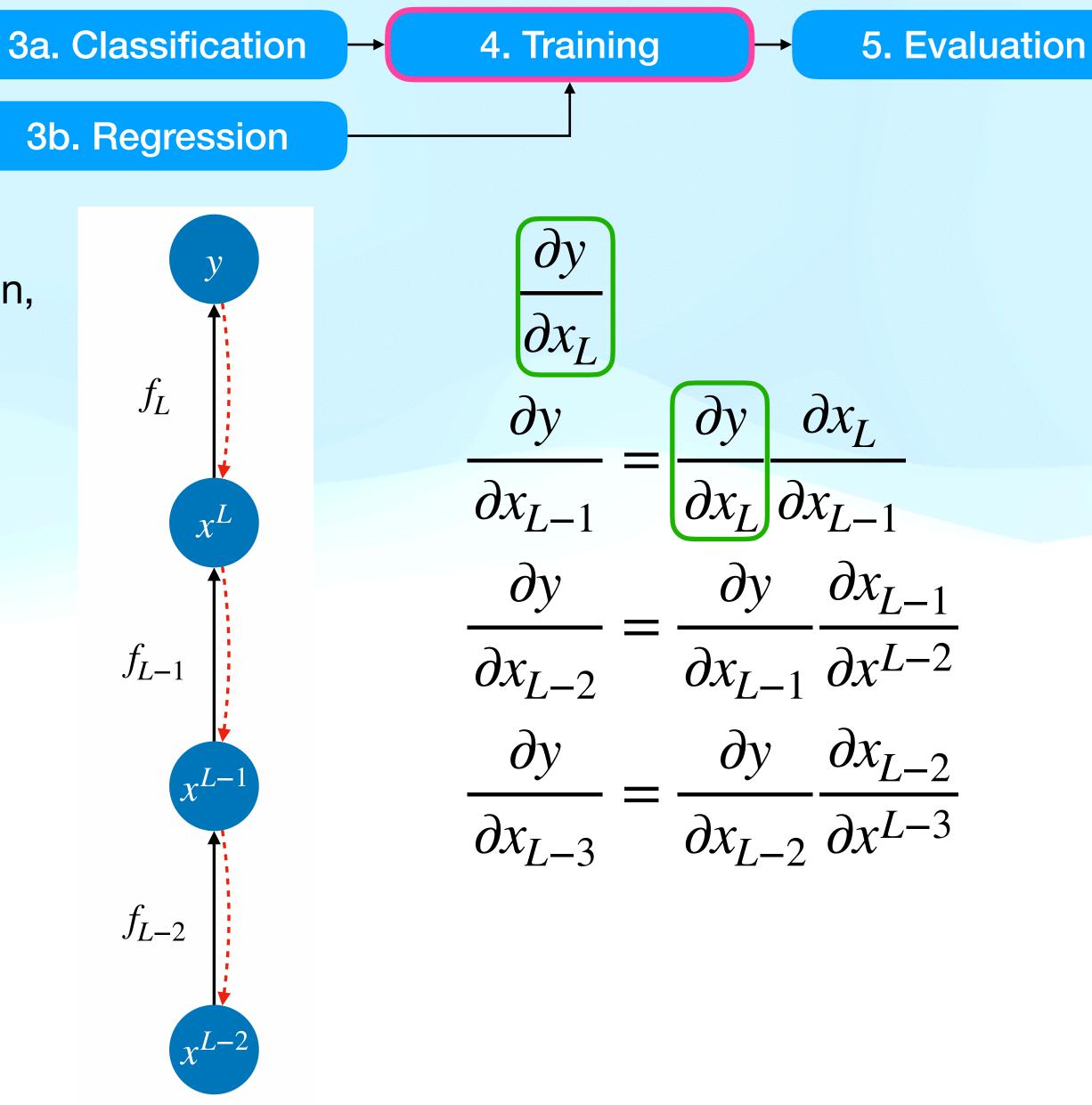
$$y = f_L(x_L)$$

$$X_L = f_{L-1}(x_{L-1})$$

$$\vdots$$

$$X_1 = f_1(x_1)$$

дy We wan to compute $\frac{\partial y}{\partial x_l}$ for $a \notin l \in \{1, l \in L\}$, $\dots, L\}$



$$y = f_L(\dots f_2(f_1(x)))$$

$$\downarrow$$

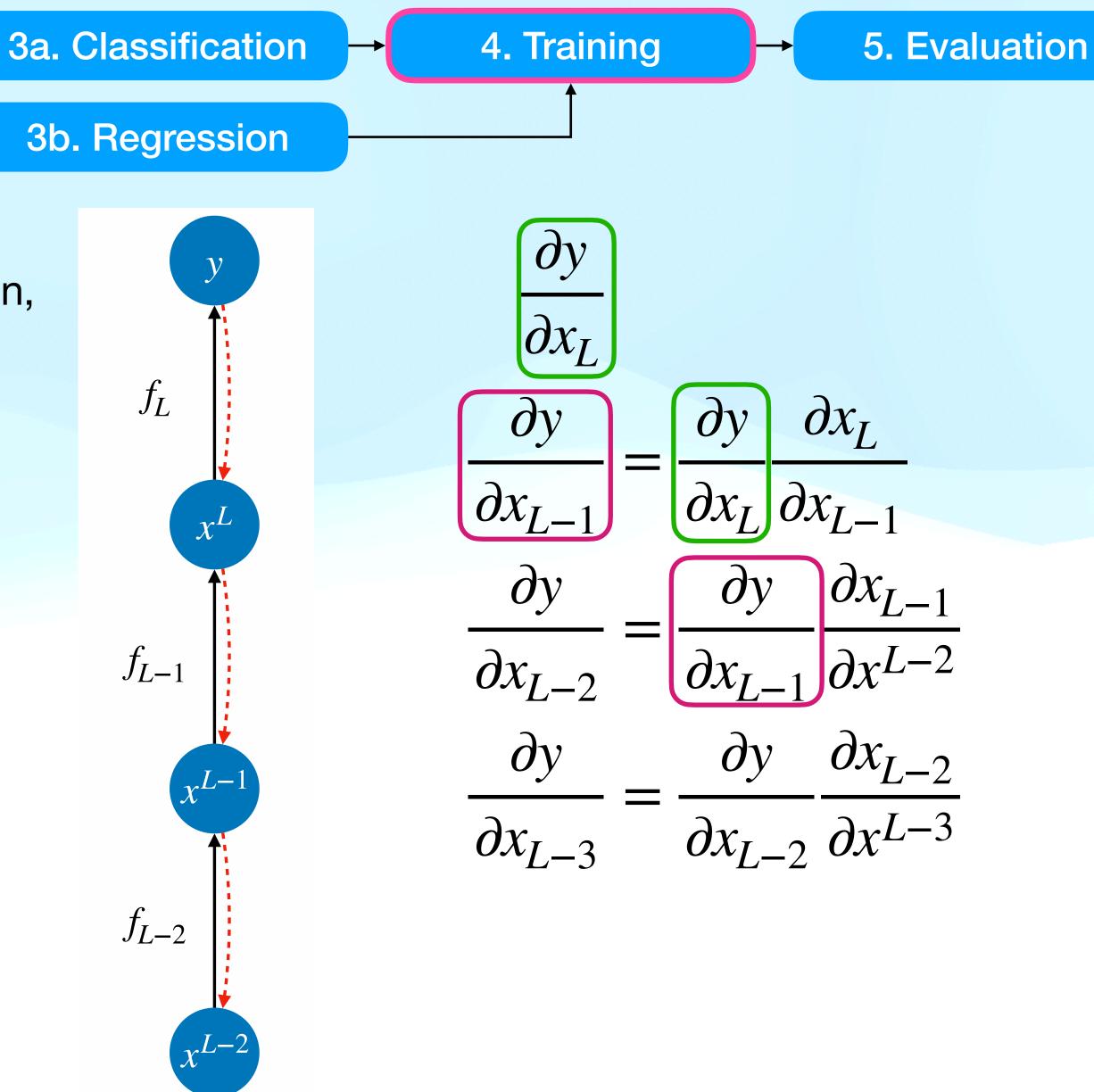
$$y = f_L(x_L)$$

$$X_L = f_{L-1}(x_{L-1})$$

$$\vdots$$

$$X_1 = f_1(x_1)$$

дy We wan to compute $\frac{\partial y}{\partial x_l}$ for $a \notin l \in \{1, l \in L\}$, $\dots, L\}$



$$y = f_L(\dots f_2(f_1(x)))$$

$$\downarrow$$

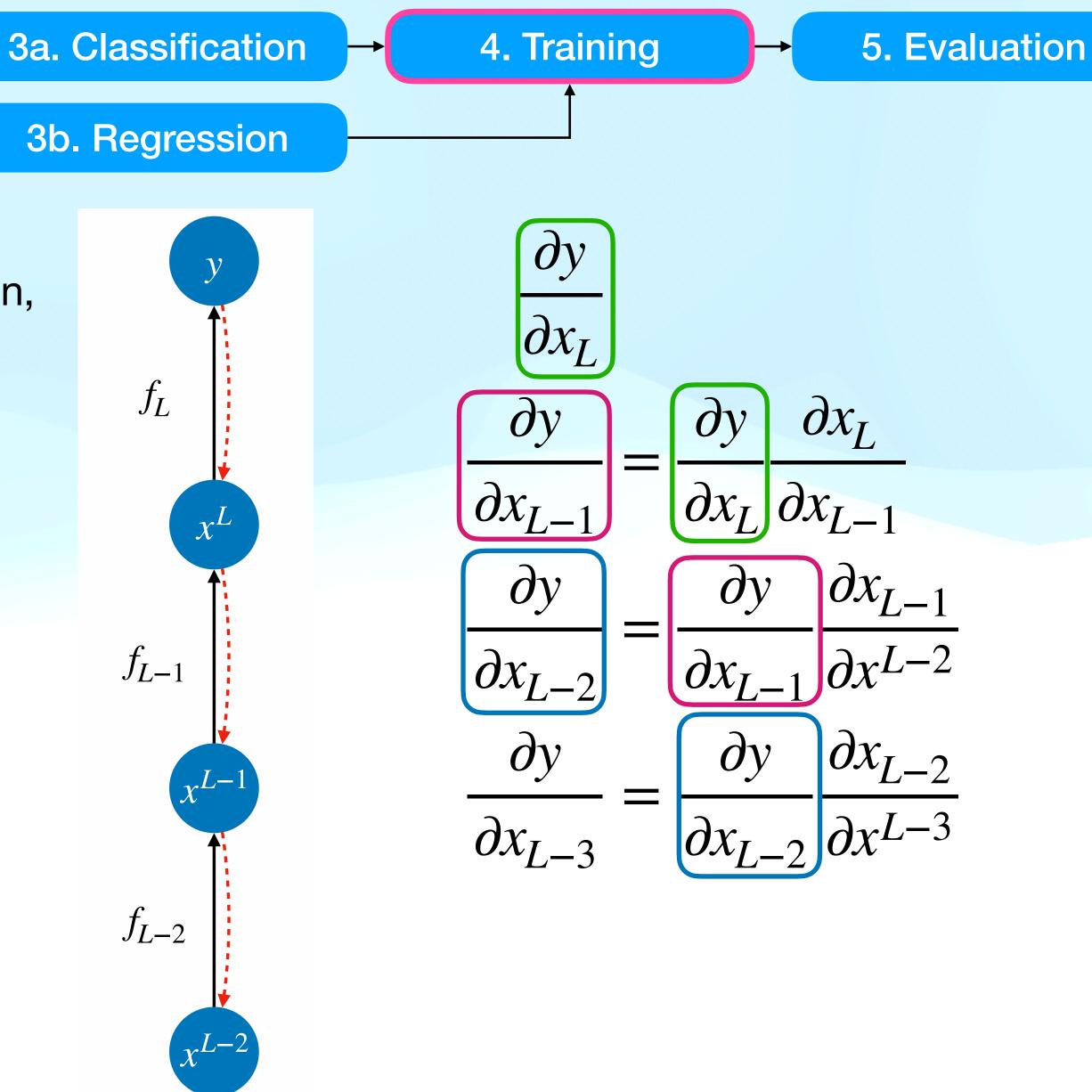
$$y = f_L(x_L)$$

$$X_L = f_{L-1}(x_{L-1})$$

$$\vdots$$

$$X_1 = f_1(x_1)$$

 ∂y We wan to compute $\frac{\partial y}{\partial x_l}$ for $a \notin l \in \{1, l \in L\}$, $\dots, L\}$



$$y = f_L(\dots f_2(f_1(x)))$$

$$\downarrow$$

$$y = f_L(x_L)$$

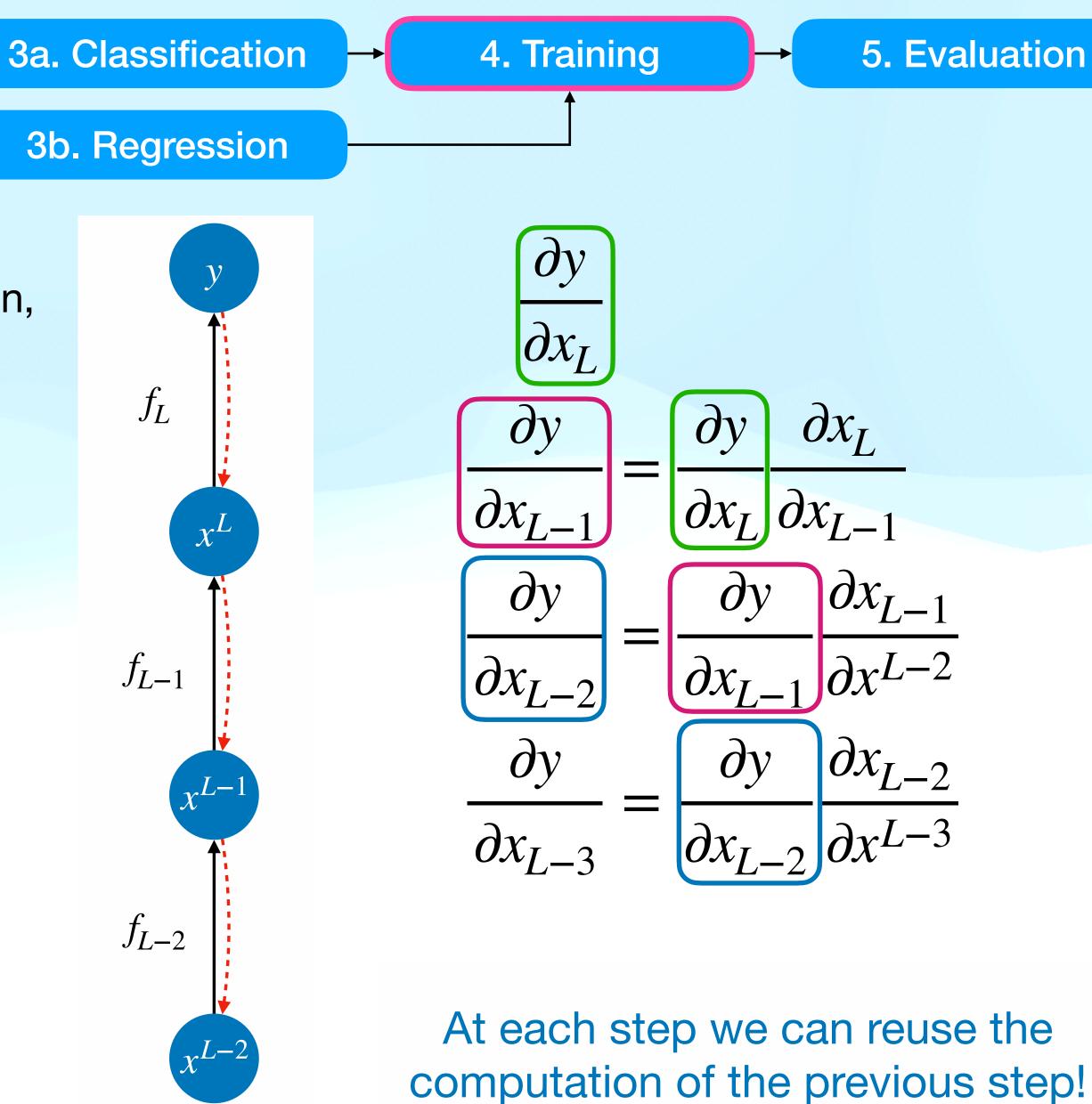
$$X_L = f_{L-1}(x_{L-1})$$

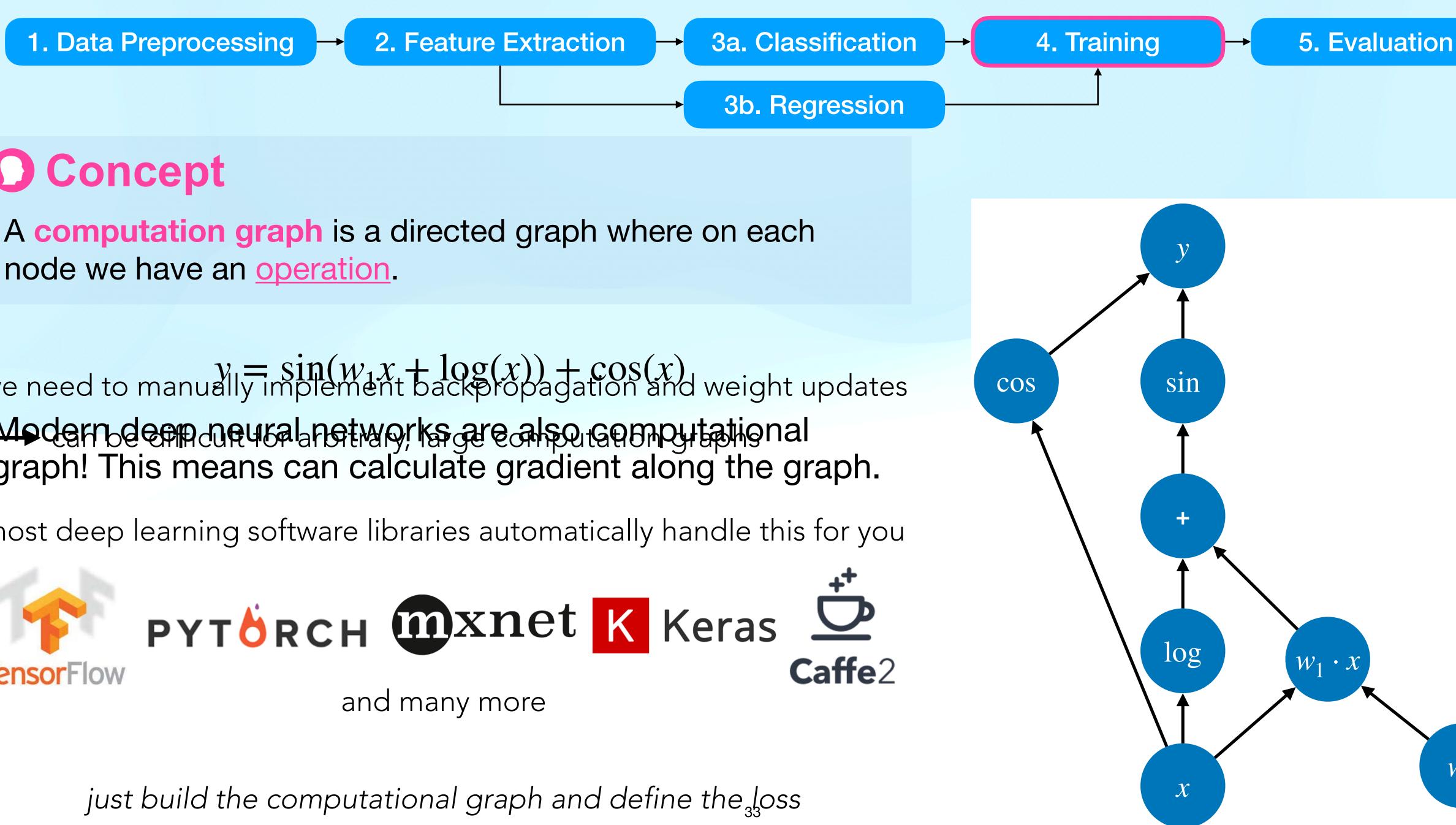
$$\vdots$$

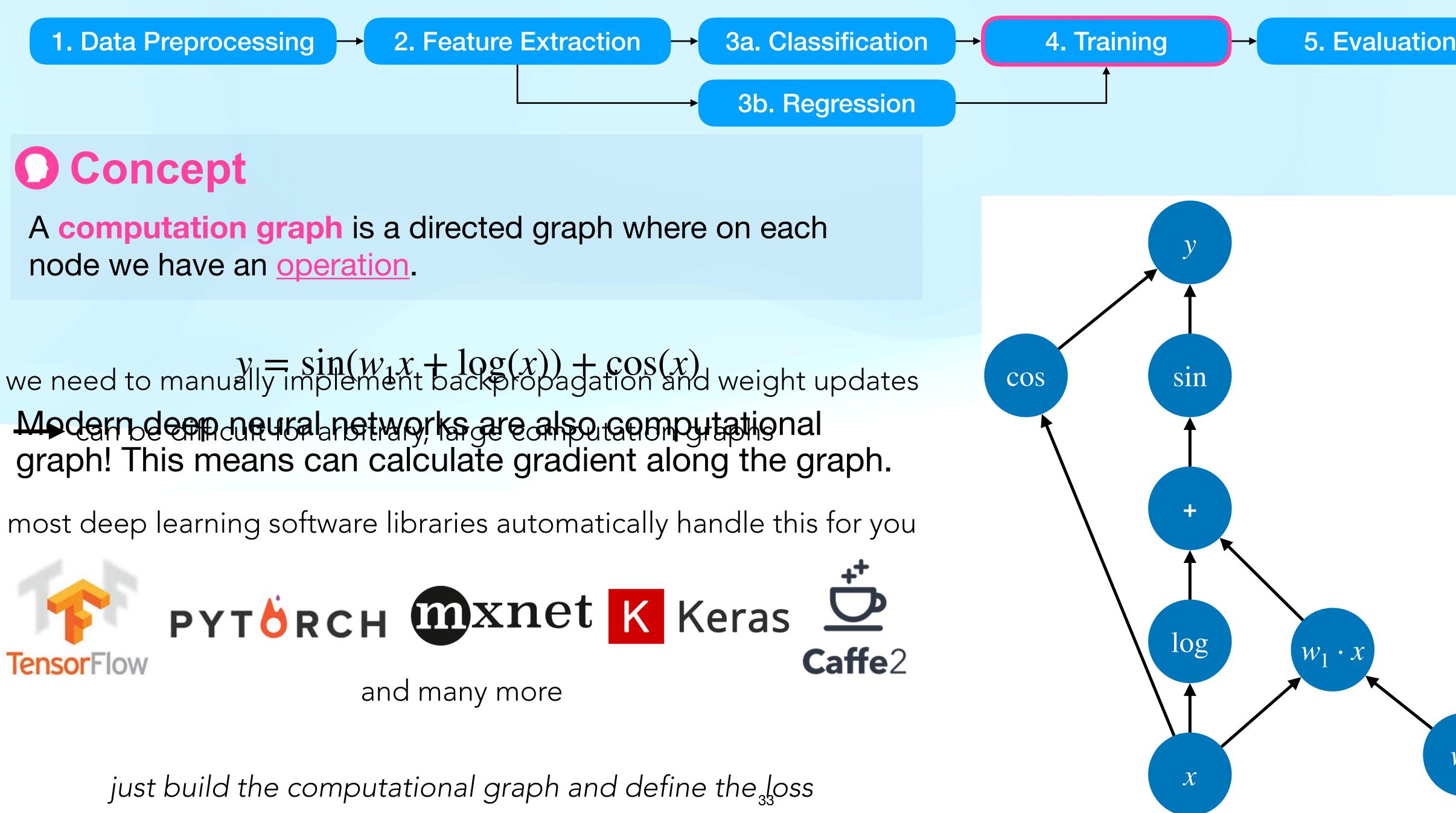
$$X_1 = f_1(x_1)$$

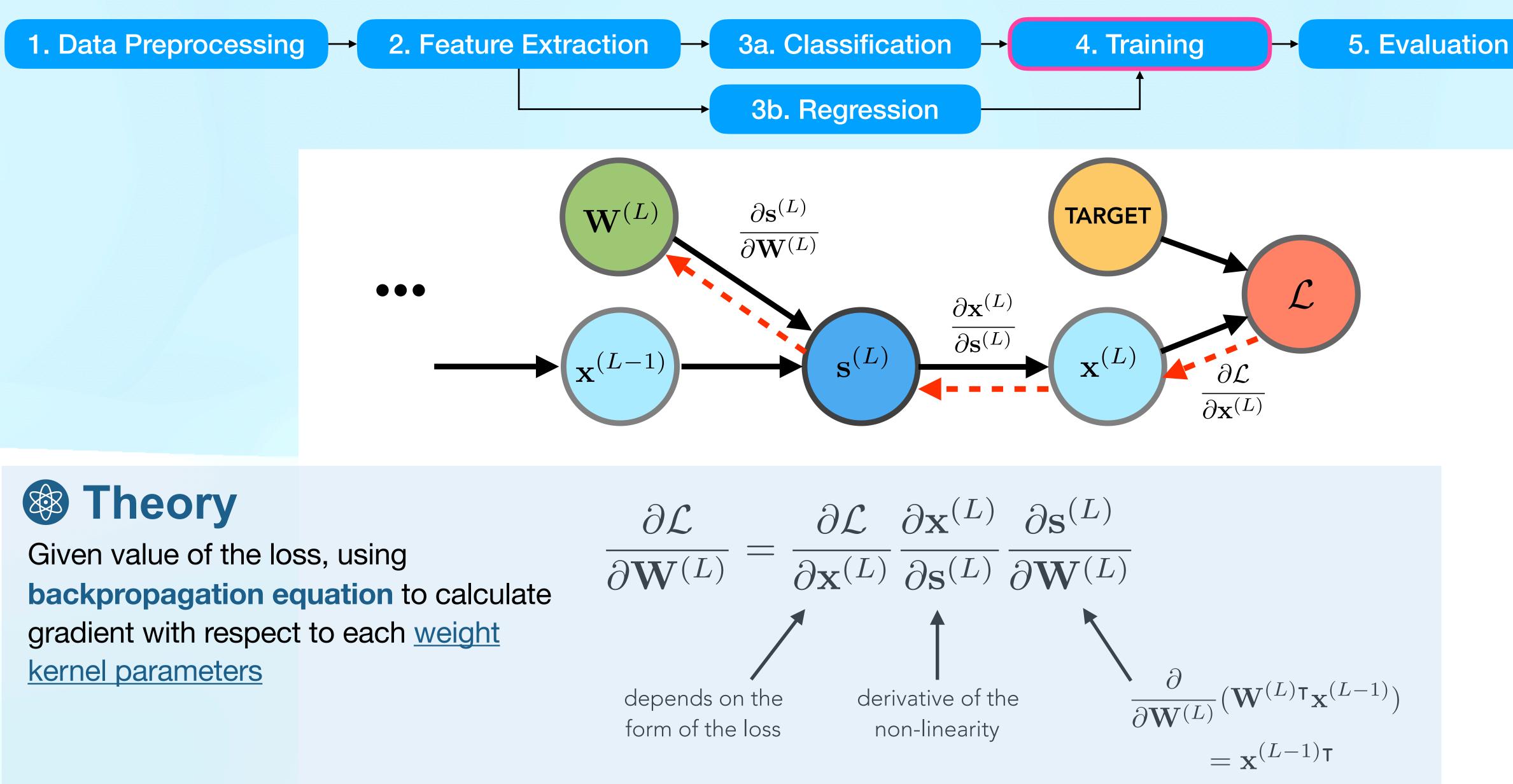
дy tor $\underset{\partial x_l}{\text{dif}} \in \{1, l \in L\}, \dots, L\}$ We wan to compute - ∂x_l

ду $l \in \{1, ..., L\}$









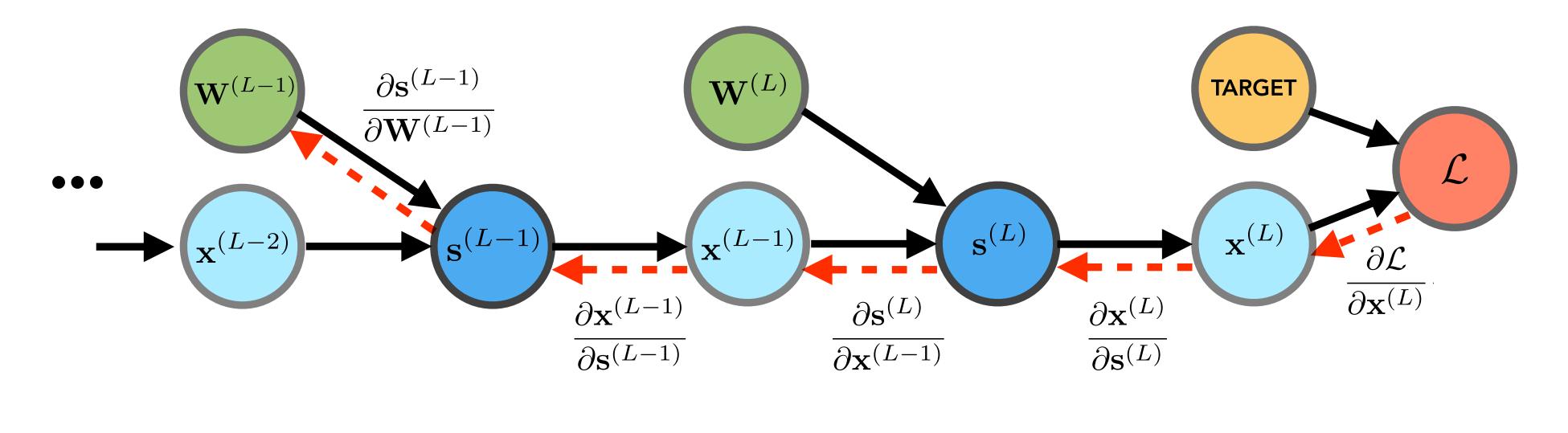
note
$$\nabla_{\mathbf{W}^{(L)}} \mathcal{L} \equiv \frac{\partial \mathcal{L}}{\partial \mathbf{W}^{(L)}}$$

is notational convention

34

now let's go back one more layer...

again we'll draw the dependency graph:



 $\frac{\partial \mathcal{L}}{\partial \mathbf{W}^{(L-1)}} = \frac{\partial \mathcal{L}}{\partial \mathbf{x}^{(L)}} \frac{\partial \mathbf{x}^{(L)}}{\partial \mathbf{s}^{(L)}} \frac{\partial \mathbf{s}^{(L)}}{\partial \mathbf{x}^{(L-1)}} \frac{\partial \mathbf{s}^{(L-1)}}{\partial \mathbf{s}^{(L-1)}} \frac{\partial \mathbf{s}^{(L-1)}}{\partial \mathbf{W}^{(L-1)}}$

2. Feature Extraction

 \rightarrow

Code

train_loader, test_loader = get_dataloader()

loss_values = [] accuracy_values = [] y_true = [] y_pred = []

for epoch in range(NUM_EPOCHS):

#Train the RNN classifier

Calculate loss loss = criterion(outputs, labels)

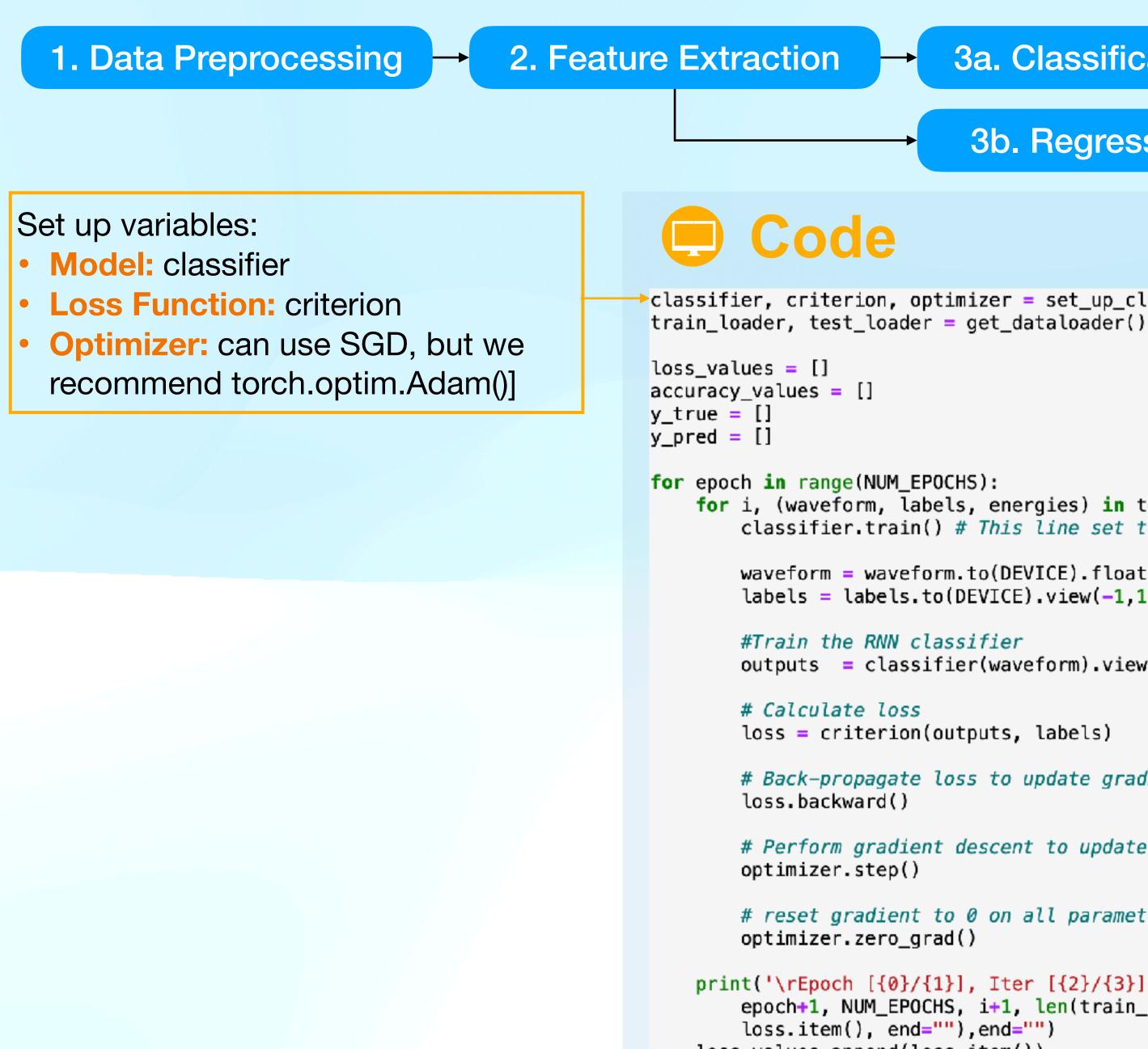
loss.backward()

optimizer.step()

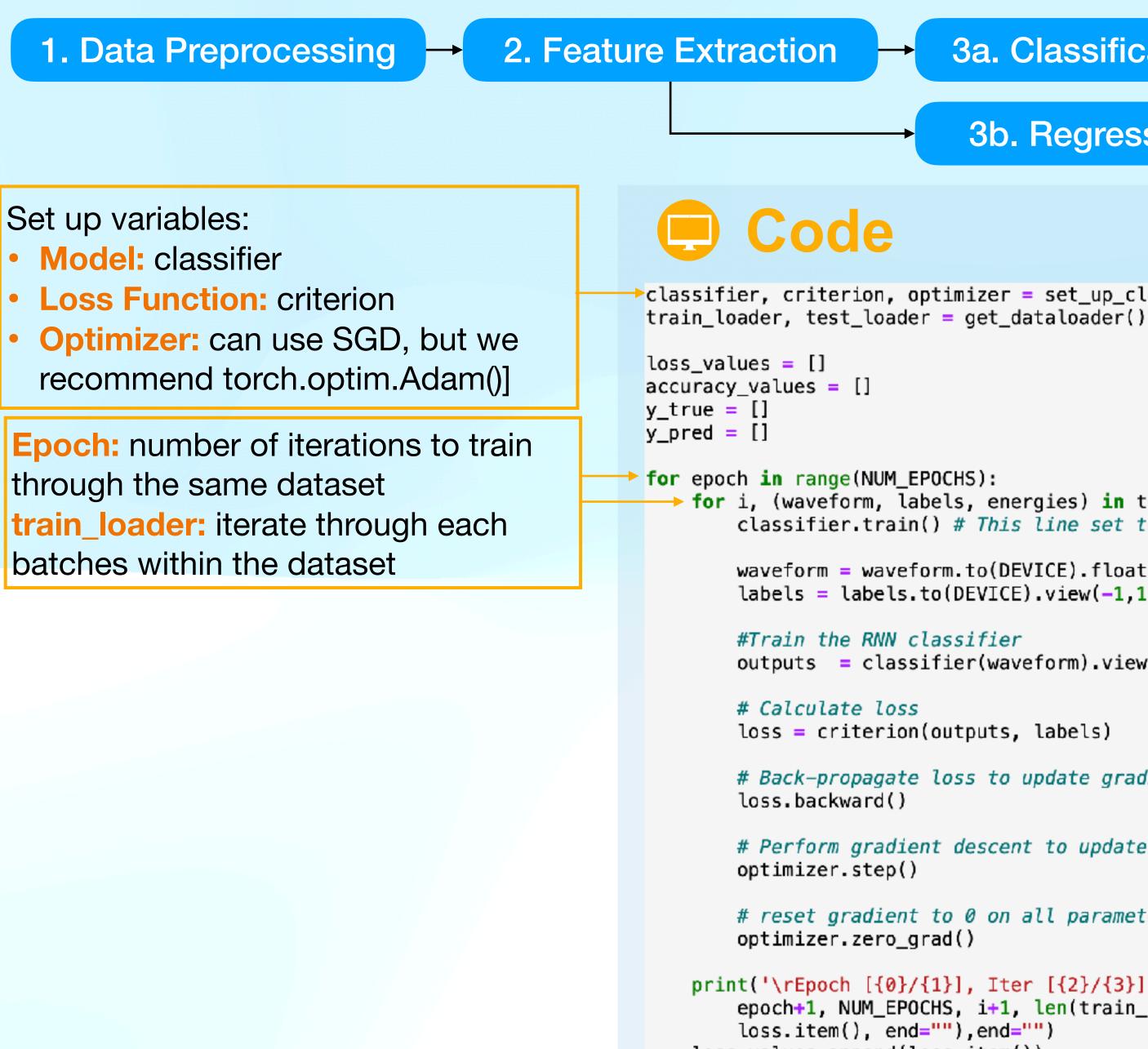
optimizer.zero_grad()

loss.item(), end=""),end="") loss_values.append(loss.item())

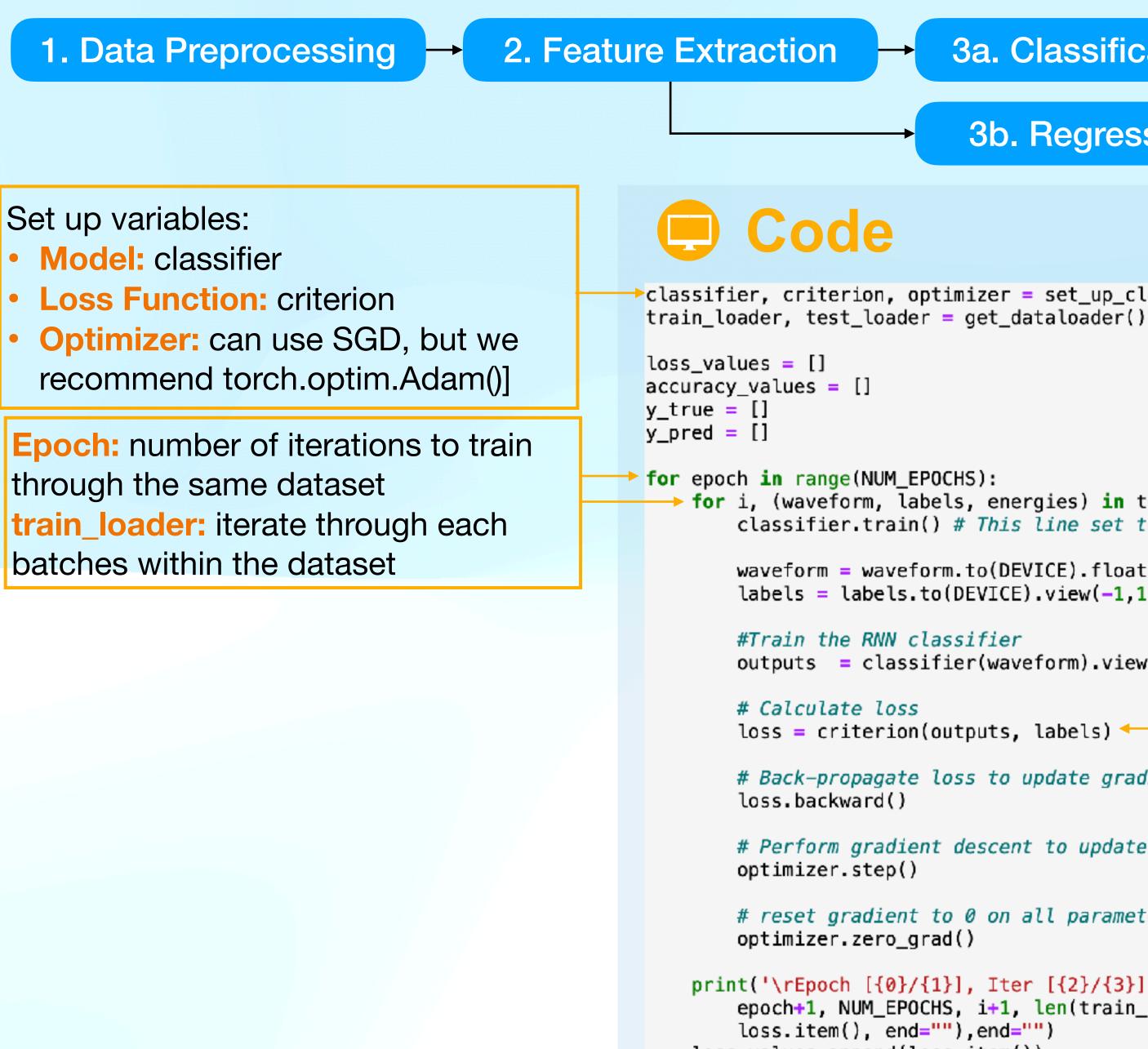
```
3a. Classification
                                                              4. Training
                                                                                            5. Evaluation
                           3b. Regression
classifier, criterion, optimizer = set_up_classifier()
   for i, (waveform, labels, energies) in tqdm(enumerate(train_loader)):
       classifier.train() # This line set the neural network to train mode
       waveform = waveform.to(DEVICE).float()
       labels = labels.to(DEVICE).view(-1,1).float()
       outputs = classifier(waveform).view(-1,1)
       # Back-propagate loss to update gradient
       # Perform gradient descent to update parameters
       # reset gradient to 0 on all parameters
   print('\rEpoch [{0}/{1}], Iter [{2}/{3}] Loss: {4:.4f}'.format(
       epoch+1, NUM_EPOCHS, i+1, len(train_loader),
                             36
```



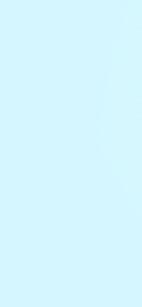
```
3a. Classification
                                                              4. Training
                                                                                            5. Evaluation
                           3b. Regression
classifier, criterion, optimizer = set_up_classifier()
   for i, (waveform, labels, energies) in tqdm(enumerate(train_loader)):
       classifier.train() # This line set the neural network to train mode
       waveform = waveform.to(DEVICE).float()
       labels = labels.to(DEVICE).view(-1,1).float()
       outputs = classifier(waveform).view(-1,1)
       # Back-propagate loss to update gradient
       # Perform gradient descent to update parameters
       # reset gradient to 0 on all parameters
   print('\rEpoch [{0}/{1}], Iter [{2}/{3}] Loss: {4:.4f}'.format(
       epoch+1, NUM_EPOCHS, i+1, len(train_loader),
   loss_values.append(loss.item())
                             36
```

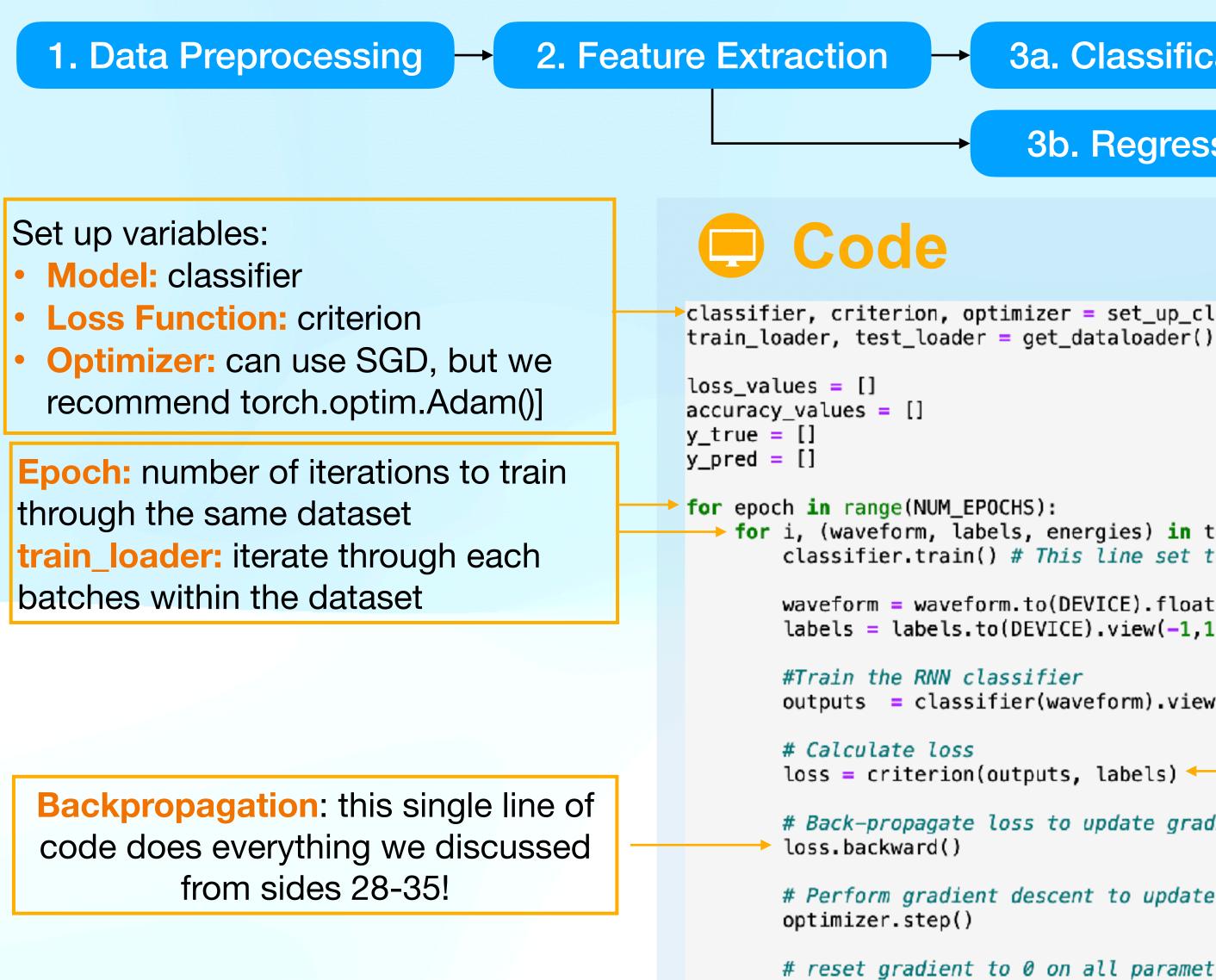


```
3a. Classification
                                                              4. Training
                                                                                            5. Evaluation
                           3b. Regression
classifier, criterion, optimizer = set_up_classifier()
  for i, (waveform, labels, energies) in tqdm(enumerate(train_loader)):
       classifier.train() # This line set the neural network to train mode
       waveform = waveform.to(DEVICE).float()
       labels = labels.to(DEVICE).view(-1,1).float()
       outputs = classifier(waveform).view(-1,1)
       # Back-propagate loss to update gradient
       # Perform gradient descent to update parameters
       # reset gradient to 0 on all parameters
   print('\rEpoch [{0}/{1}], Iter [{2}/{3}] Loss: {4:.4f}'.format(
       epoch+1, NUM_EPOCHS, i+1, len(train_loader),
   loss_values.append(loss.item())
                             36
```



```
3a. Classification
                                                            4. Training
                                                                                         5. Evaluation
                          3b. Regression
classifier, criterion, optimizer = set_up_classifier()
  for i, (waveform, labels, energies) in tqdm(enumerate(train_loader)):
       classifier.train() # This line set the neural network to train mode
       waveform = waveform.to(DEVICE).float()
       labels = labels.to(DEVICE).view(-1,1).float()
                                                                          Forward pass: feed data
       outputs = classifier(waveform).view(-1,1) <</pre>
                                                                           through the neural network
                                                                          model and calculate loss value
                                                                          (already discussed)
       # Back-propagate loss to update gradient
       # Perform gradient descent to update parameters
       # reset gradient to 0 on all parameters
   print('\rEpoch [{0}/{1}], Iter [{2}/{3}] Loss: {4:.4f}'.format(
       epoch+1, NUM_EPOCHS, i+1, len(train_loader),
   loss_values.append(loss.item())
                            36
```

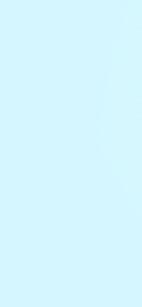



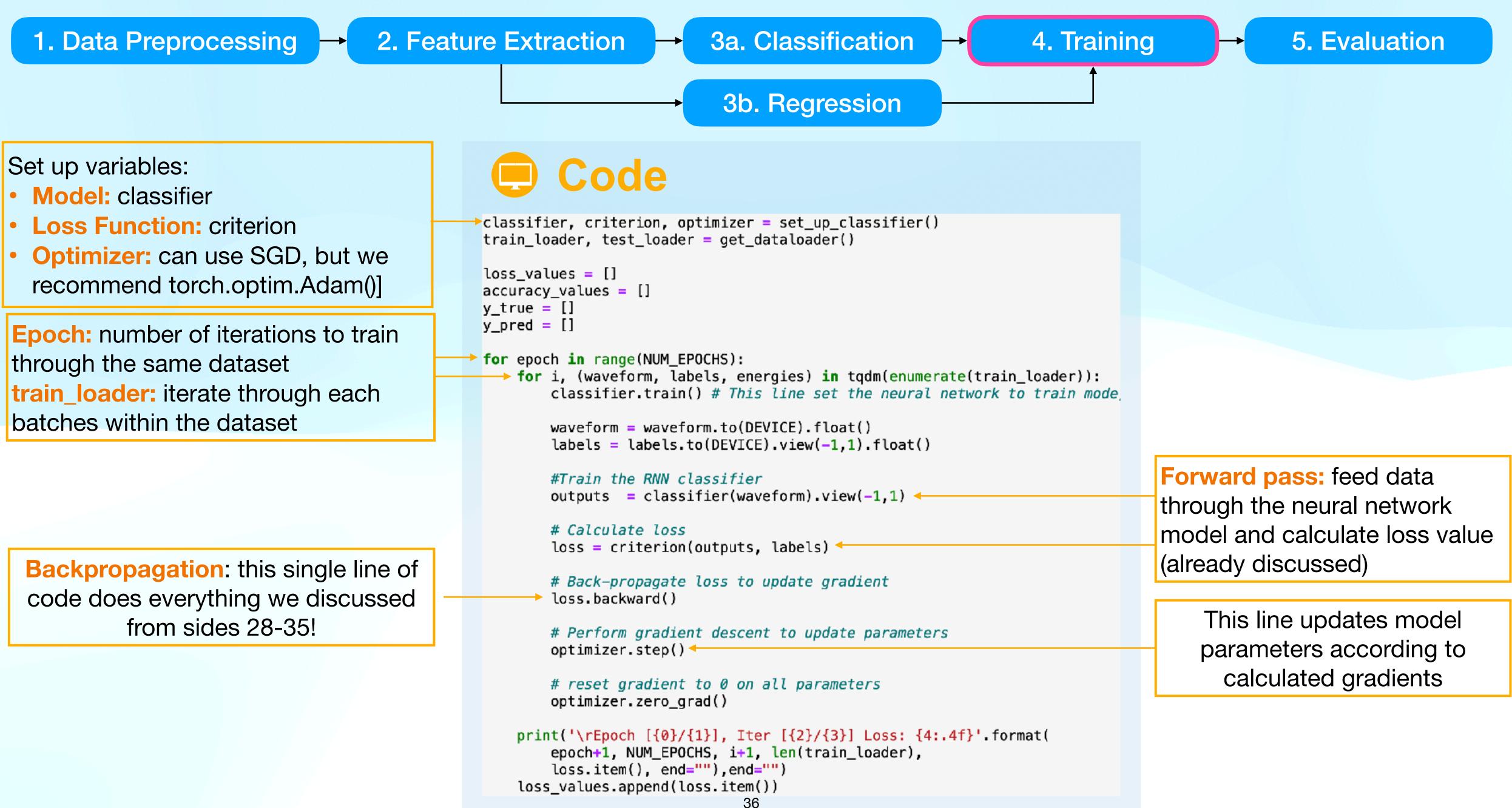


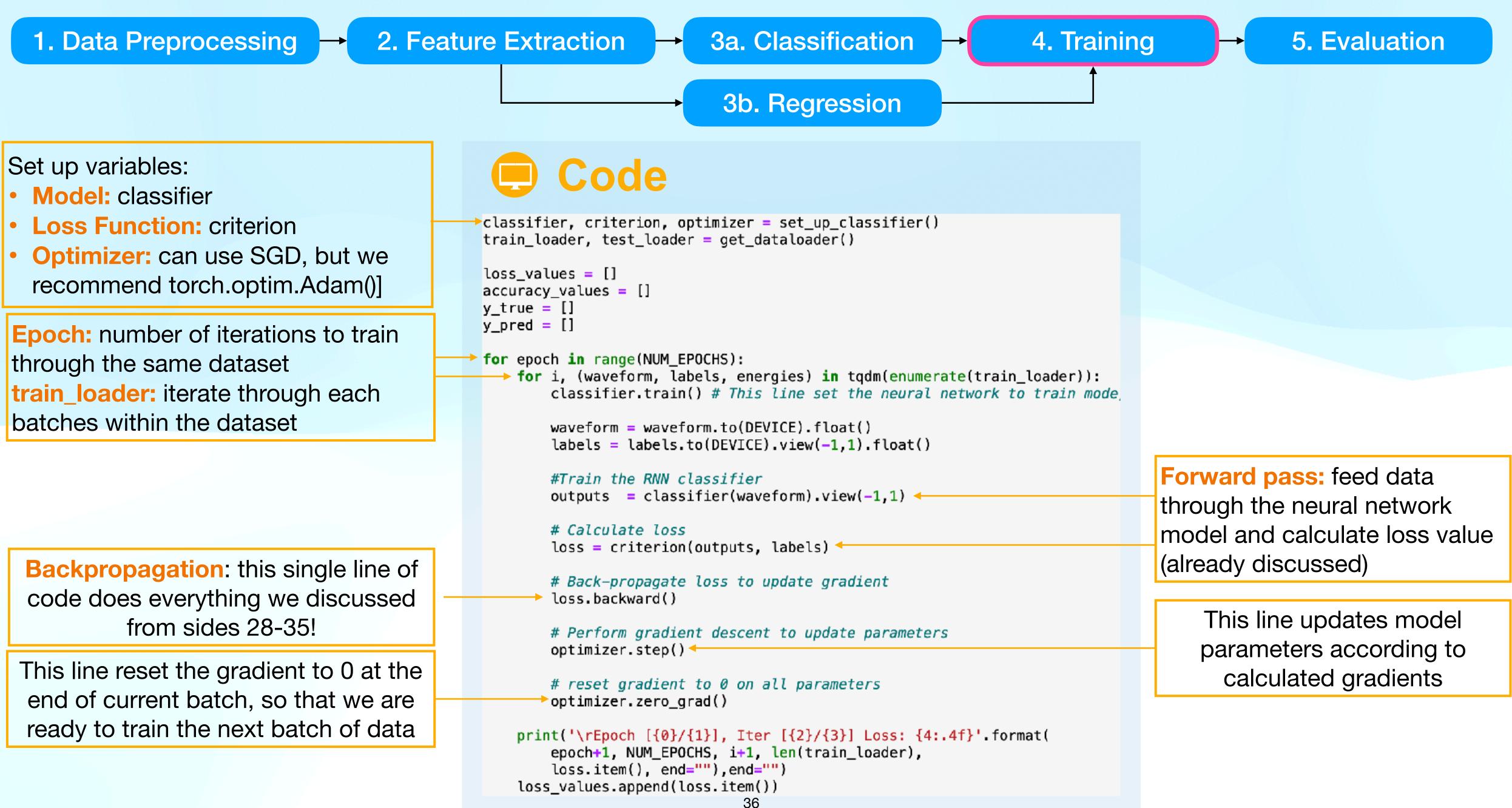
optimizer.zero_grad()

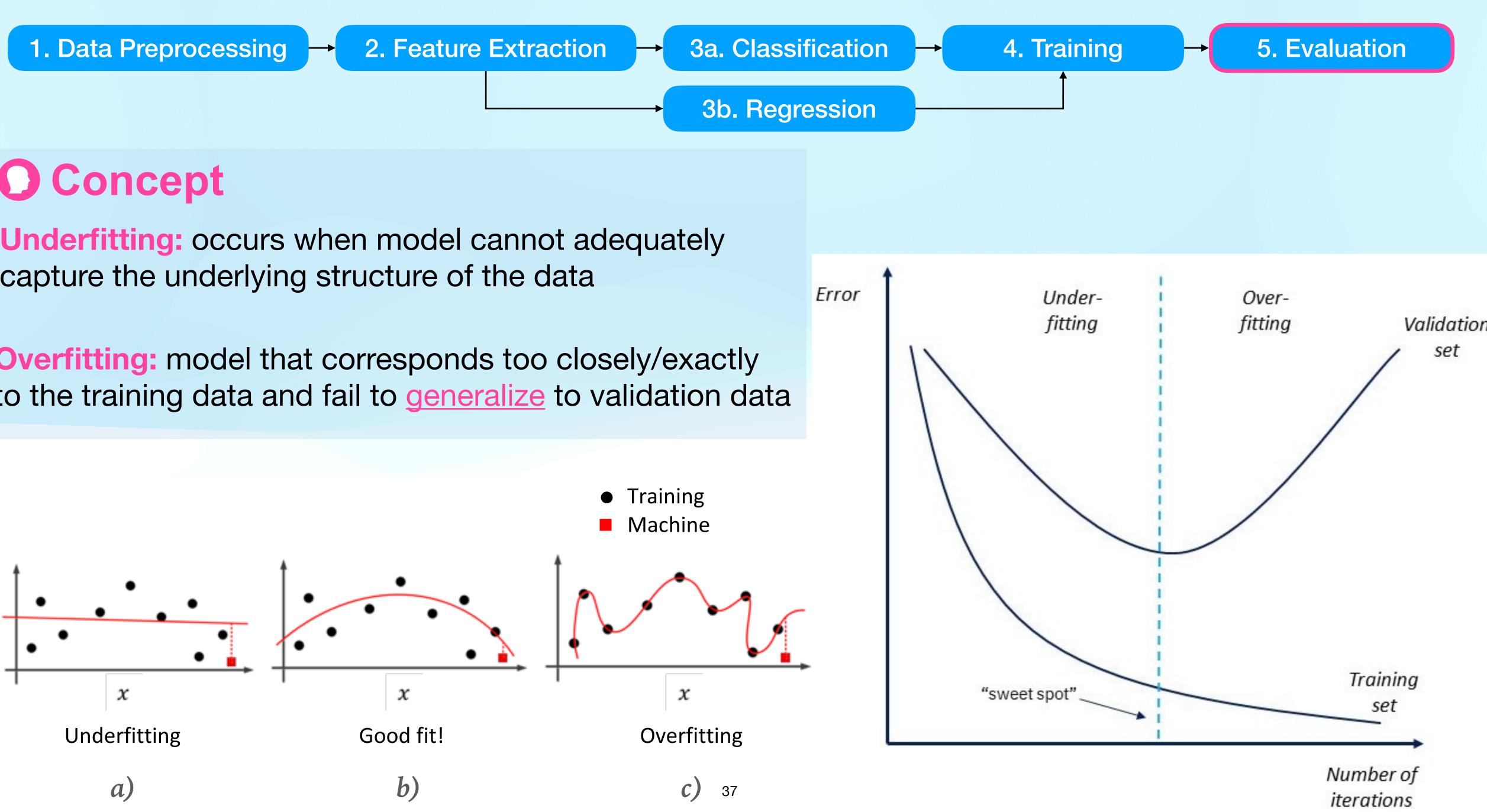
loss.item(), end=""),end="") loss_values.append(loss.item())

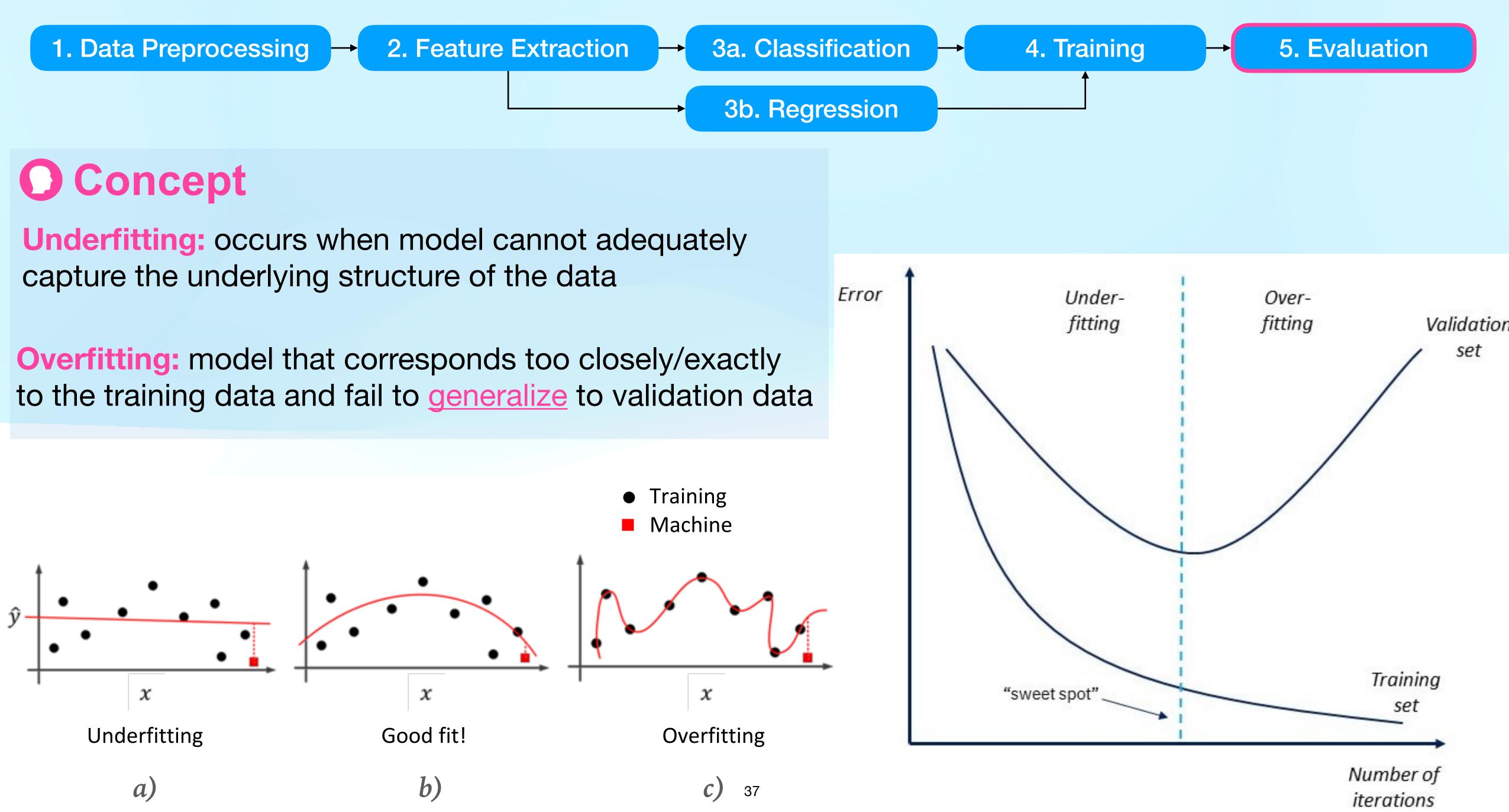
```
3a. Classification
                                                            4. Training
                                                                                         5. Evaluation
                          3b. Regression
classifier, criterion, optimizer = set_up_classifier()
  for i, (waveform, labels, energies) in tqdm(enumerate(train_loader)):
       classifier.train() # This line set the neural network to train mode
       waveform = waveform.to(DEVICE).float()
       labels = labels.to(DEVICE).view(-1,1).float()
                                                                          Forward pass: feed data
       outputs = classifier(waveform).view(-1,1) <</pre>
                                                                          through the neural network
                                                                          model and calculate loss value
                                                                          (already discussed)
       # Back-propagate loss to update gradient
       # Perform gradient descent to update parameters
       # reset gradient to 0 on all parameters
   print('\rEpoch [{0}/{1}], Iter [{2}/{3}] Loss: {4:.4f}'.format(
       epoch+1, NUM_EPOCHS, i+1, len(train_loader),
                            36
```





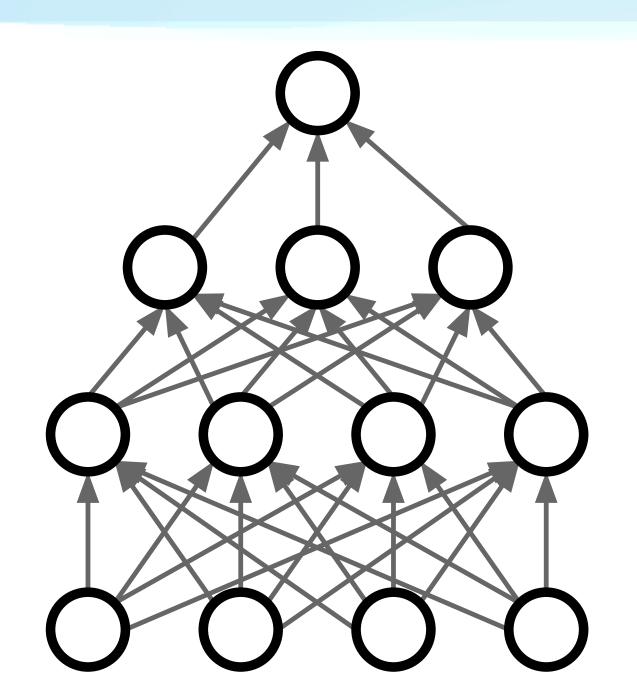


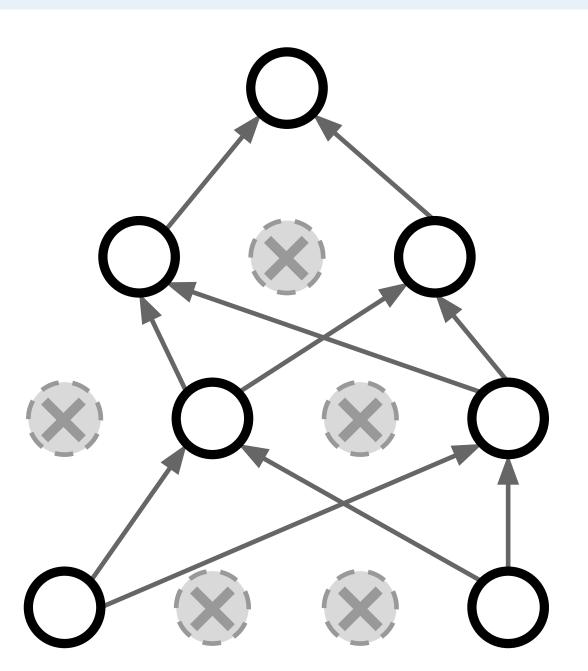


O Concept

Dropout: during training, randomly set some neurons to zero which forces the NN not to become solely dependent on one neuron.

torch.nn.Linear(1000,512),
 torch.nn.ReLU(),
 torch.nn.Dropout(),

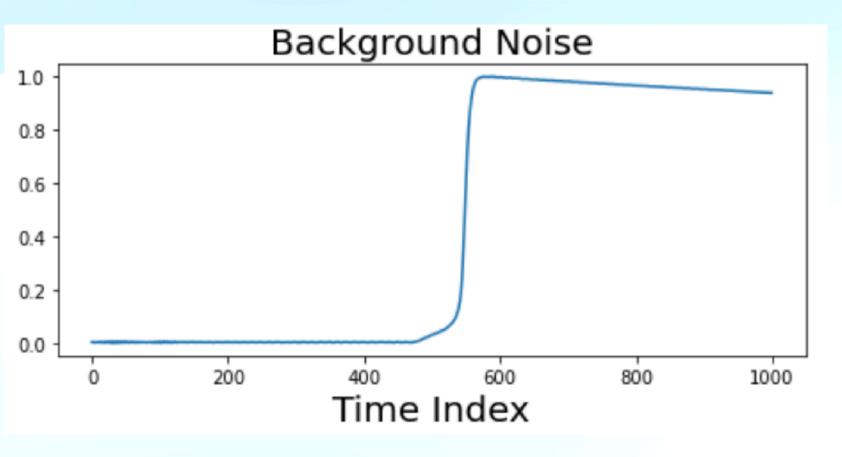




n		

2. Feature Extraction

Time Series Data (BATCH_SIZE, 1000)



O Concept

3a. Classification

4. Training

5. Evaluation

3b. Regression

NNLayer(1000,512) $\rightarrow \sigma$ \rightarrow NNLayer(512, 256) $\rightarrow \sigma$ \rightarrow NNLayer(256, 32) $\rightarrow \sigma$

O Concept

Binary Classification 1

Task Layer: NNLayer(32, 1) \rightarrow One float point No.

- After training, it can be onsidered as a "classification sco
 - Higher score means the answer is more likely "yes"
 - Lower score means the answer is more likely "no"
 - A threshold is need to distinguish "yes" from "no"

o: torch.sigmoid(x)

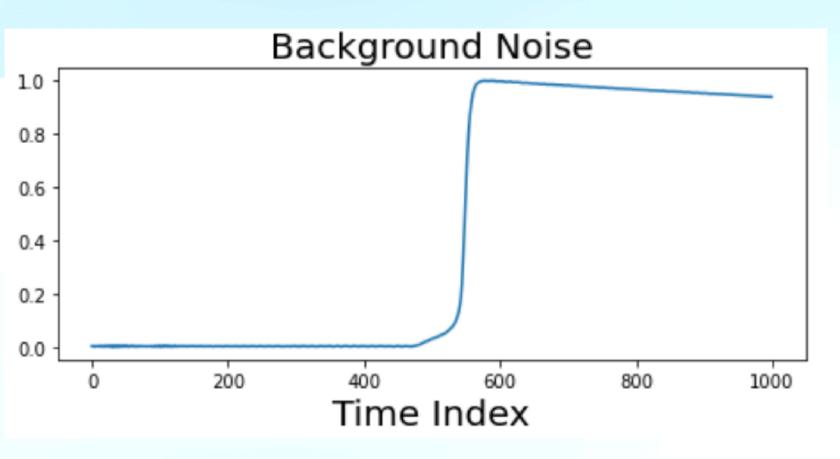
Loss Function: torch.nn.BCELoss()

n	
	J

ore":	

2. Feature Extraction

Time Series Data (BATCH SIZE, 1000)



O Concept **Feature Extractor Network**

Take raw data as the input and output a low-dimensional vector

3a. Classification

5. Evaluation

3b. Regression

- NNLayer(1000,512) $\rightarrow \sigma$
- \rightarrow NNLayer(512, 256) $\rightarrow \sigma$
- \rightarrow NNLayer(256, 32) $\rightarrow \sigma$

O Concept

Binary Classification 1

Task Layer: NNLayer(32, 1) \rightarrow One float point No.

- After training, it can be onsidered as a "classification sco
 - Higher score means the answer is more likely "yes"
 - Lower score means the answer is more likely "no"
 - A threshold is need to distinguish "yes" from "no"

σ: torch.sigmoid(x)

Loss Function: torch.nn.BCELoss()

n	
	J

ore":	

- <u>Signal/positive</u>: single-site waveform
- <u>Backgrounds/negative</u>: multi-site waveform
- λ : Classification score produced by training the NN
- Cutting Threshold: set at to at 0.5 to define our yes/no answer:
 - $\lambda > 0.5$: event is a signal
 - $\lambda \leq 0.5$: event is a background

means this event is _____ly classified as ___

3a. Classification		4. Training	5. Evaluation
		↑	
3b. Regression)		

	psd_label_avse: True Signal	psd_label_avse True Backgrour
Classified As Signal	True Positive (TP)	False Positive (F
Classified as bkg	False Negative (FN)	True Negative (

n

- <u>Signal/positive</u>: single-site waveform
- <u>Backgrounds/negative</u>: multi-site waveform
- λ : Classification score produced by training the NN
- Cutting Threshold: set at to at 0.5 to define our yes/no answer:
 - $\lambda > 0.5$: event is a signal
 - $\lambda \leq 0.5$: event is a background

True Positive

means this event is <u>Tru</u> ly classified as <u>Positive</u>

3a. Classification	\rightarrow	4. Training	5. Evaluation
3b. Regression			

	psd_label_avse: True Signal	psd_label_avse True Backgrour
Classified As Signal	True Positive (TP)	False Positive (I
Classified as bkg	False Negative (FN)	True Negative (

n

 \rightarrow

- <u>Signal/positive</u>: single-site waveform
- <u>Backgrounds/negative:</u> multi-site waveform
- λ : Classification score produced by training the NN
- <u>Cutting Threshold</u>: set at to at 0.5 to define our yes/no answer:
 - $\lambda > 0.5$: event is a signal
 - $\lambda \leq 0.5$: event is a background

True Positive False Positive

3a. Classification	\rightarrow	4. Training	5. Evaluation
3b. Regression			

	psd_label_avse: True Signal	psd_label_avse True Backgrour
Classified As Signal	True Positive (TP)	False Positive (F
Classified as bkg	False Negative (FN)	True Negative (

Positive means this event is <u><u></u>Iy classified as _</u> False Positive

- <u>Signal/positive</u>: single-site waveform
- <u>Backgrounds/negative</u>: multi-site waveform
- λ : Classification score produced by training the NN
- Cutting Threshold: set at to at 0.5 to define our yes/no answer:
 - $\lambda > 0.5$: event is a signal
 - $\lambda \leq 0.5$: event is a background

True Positivemeans this eventFalse PositiveTrue Negative

3a. Classification	\rightarrow	4. Training	5. Evaluation
3b. Regression			

	psd_label_avse: True Signal	psd_label_avse True Backgrour
Classified As Signal	True Positive (TP)	False Positive (F
Classified as bkg	False Negative (FN)	True Negative (

is _	Tru	_ly classified as _	Positive	I
	False		Positive	
	Tru		Negative	

n

→

- <u>Signal/positive</u>: single-site waveform
- <u>Backgrounds/negative</u>: multi-site waveform
- λ : Classification score produced by training the NN
- Cutting Threshold: set at to at 0.5 to define our yes/no answer:
 - $\lambda > 0.5$: event is a signal
 - $\lambda \leq 0.5$: event is a background

True Positivemeans this eventFalse Positiverue NegativeFalse Negative

3a. Classification	\rightarrow	4. Training	5. Evaluation
3b. Regression			

	psd_label_avse: True Signal	psd_label_avse True Backgrour
Classified As Signal	True Positive (TP)	False Positive (F
Classified as bkg	False Negative (FN)	True Negative (

is _	Tru	_ly classified as _	Positive _
	False		Positive
	Tru		Negative
	False		Negative

n

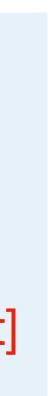
- <u>Signal/positive</u>: single-site waveform
- <u>Backgrounds/negative</u>: multi-site waveform
- λ : Classification score produced by training the NN
- <u>Cutting Threshold</u>: set at to at 0.5 to define our yes/no answer:
 - $\lambda > 0.5$: event is a signal
 - $\lambda \leq 0.5$: event is a background

O Concept TP True Positive Rate (TPR) = ----TP + FNFP False Positive Rate (FPR) = $\frac{1}{FP + TN}$ [FP+TN is the total number of backgrounds in the dataset]

3a. Classification	4. Training	5. Evaluation
3b. Regression		

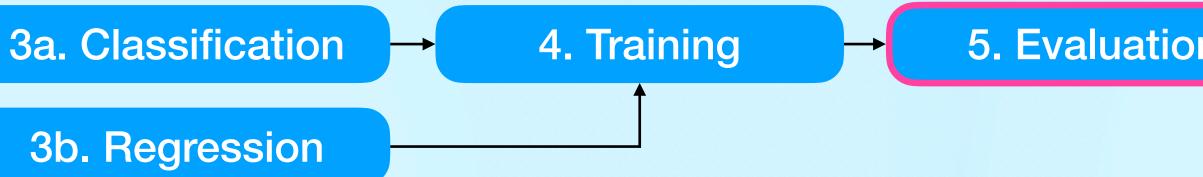
	psd_label_avse: True Signal	psd_label_avse True Backgrour
Classified As Signal	True Positive (TP)	False Positive (F
Classified as bkg	False Negative (FN)	True Negative (

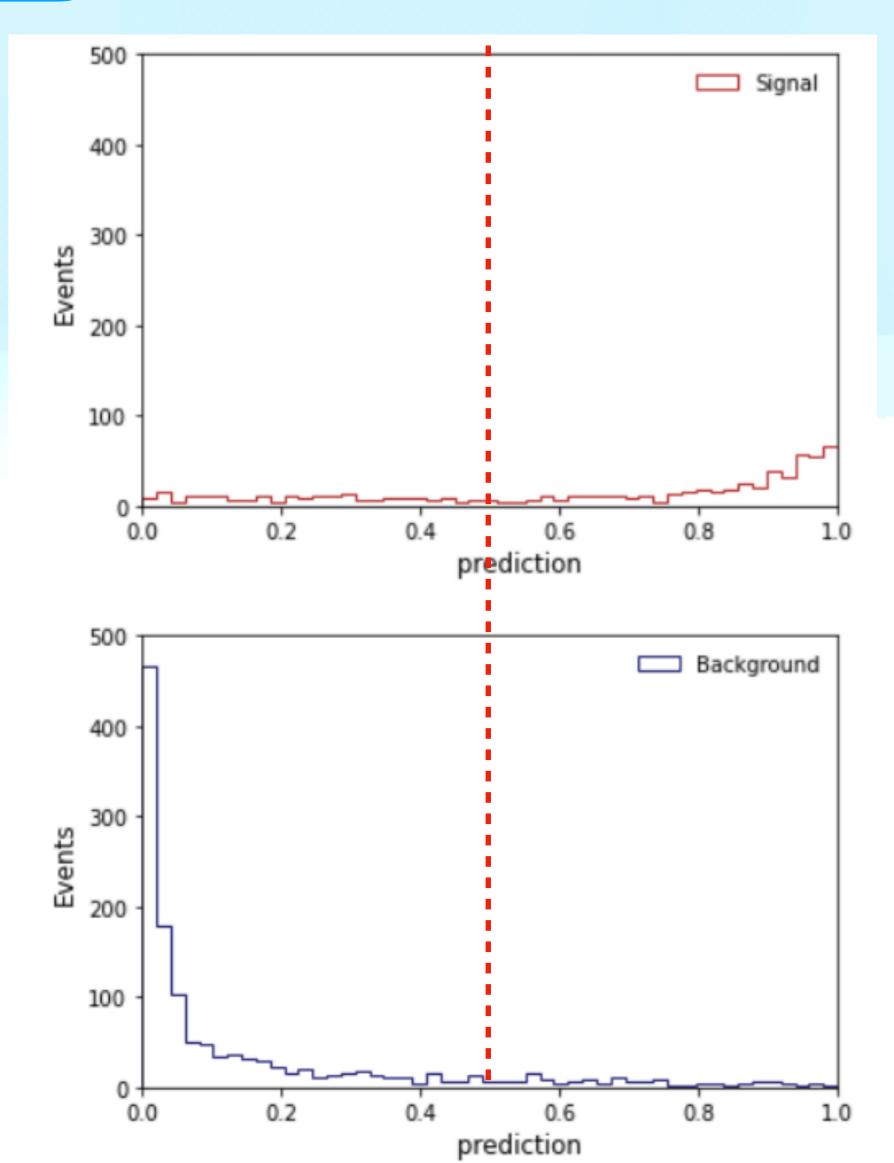
[TP+FN is the total number of signal in the dataset]



→

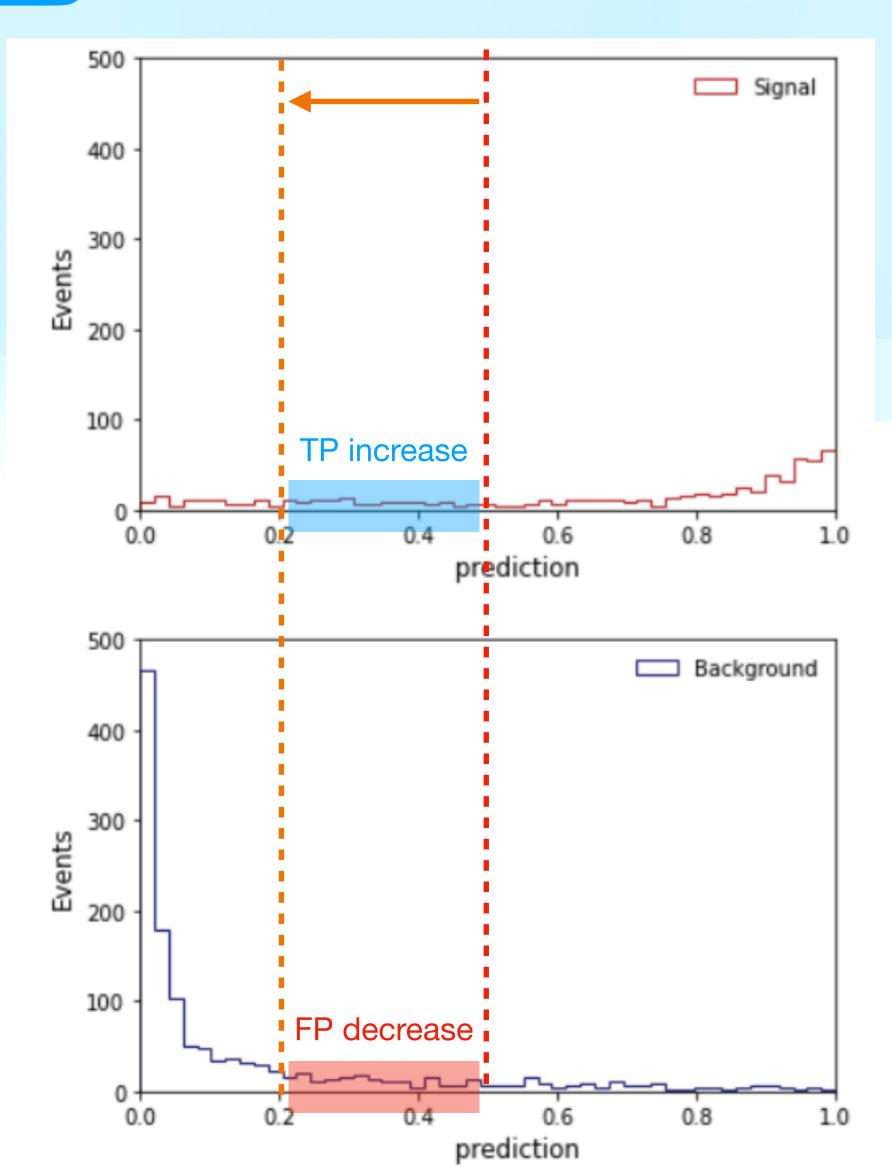
- <u>Signal/positive</u>: single-site waveform
- <u>Backgrounds/negative</u>: multi-site waveform
- $\underline{\lambda}$: Classification score produced by training the NN
- Cutting Threshold: set at to at 0.5 to define our yes/no answer:
 - $\lambda > 0.5$: event is a signal
 - $\lambda \leq 0.5$: event is a background





n		
		_

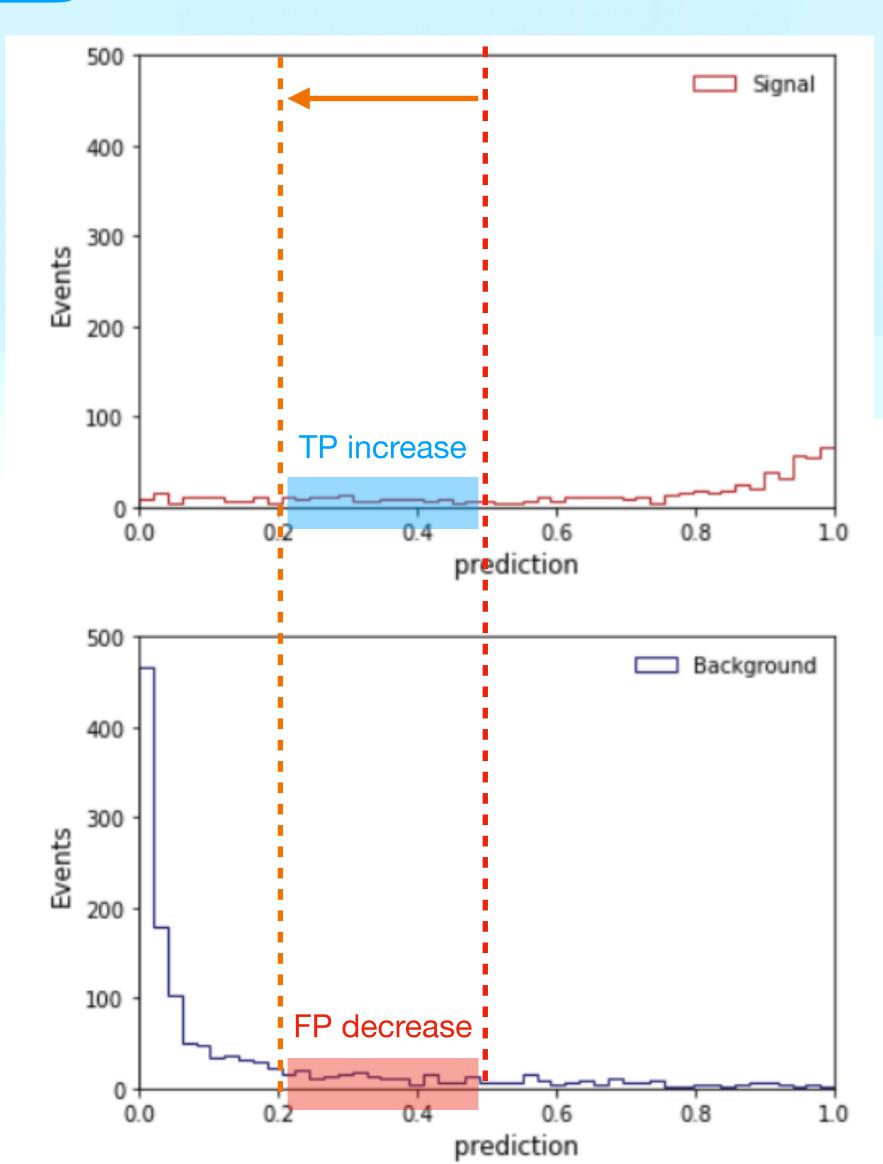
- <u>Signal/positive</u>: single-site waveform
- <u>Backgrounds/negative</u>: multi-site waveform
- $\underline{\lambda}$: Classification score produced by training the NN
- Cutting Threshold: set at to at 0.5 to define our yes/no answer:
 - $\lambda > 0.5$: event is a signal
 - $\lambda \leq 0.5$: event is a background



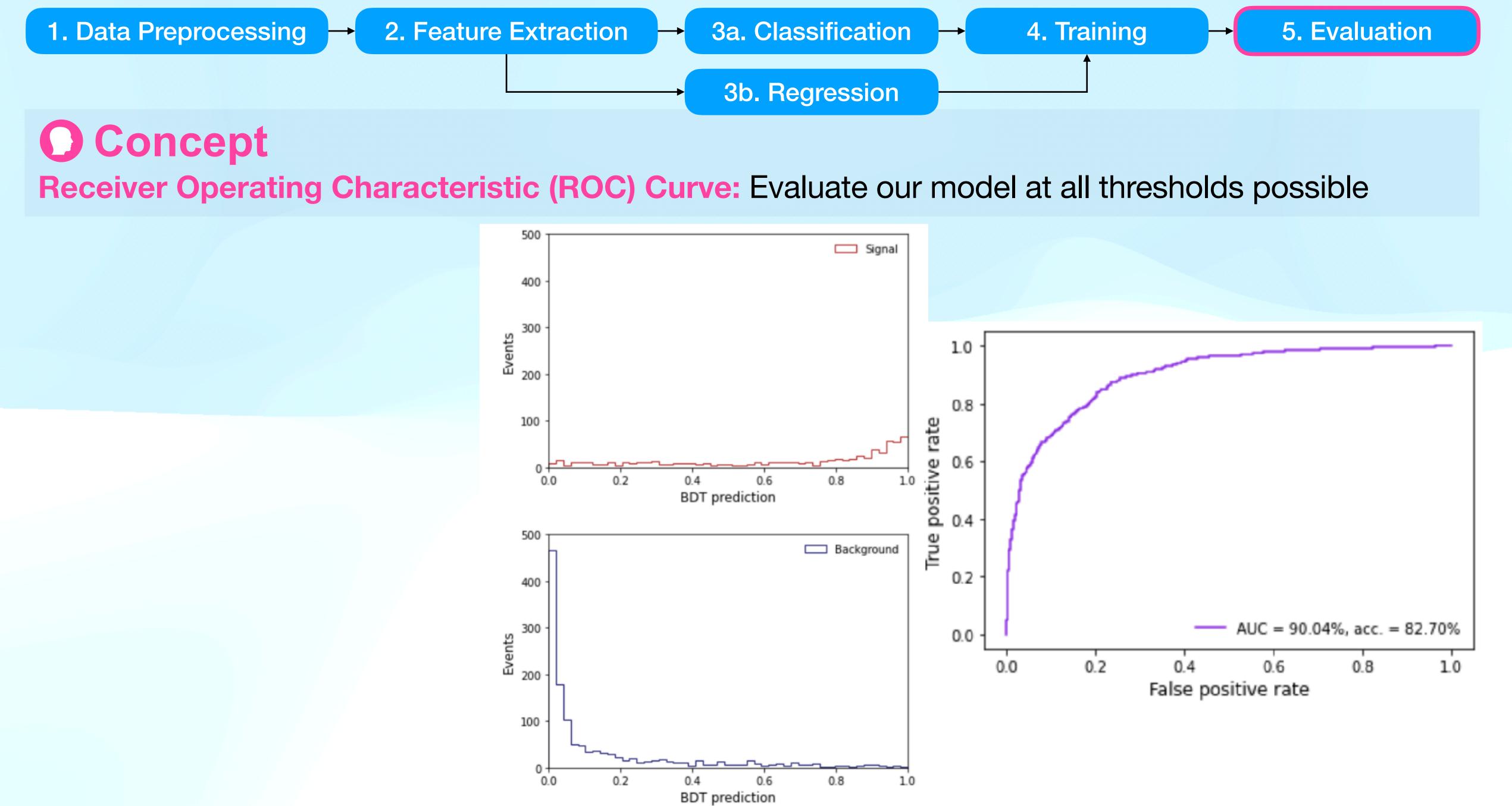
42

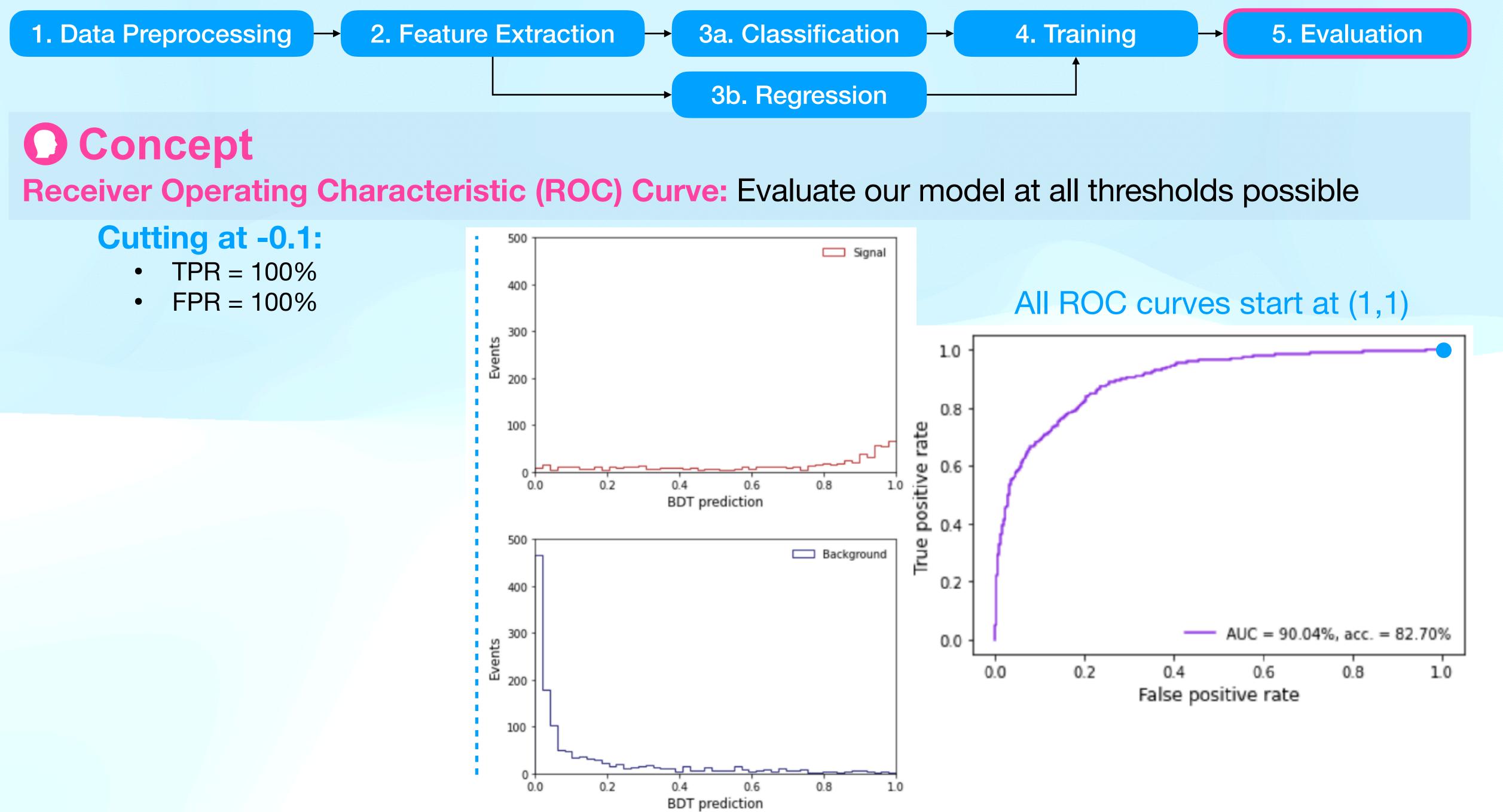
n		
		_

- <u>Signal/positive</u>: single-site waveform
- <u>Backgrounds/negative</u>: multi-site waveform
- λ : Classification score produced by training the NN
- <u>Cutting Threshold</u>: set at to at 0.5 to define our yes/no answer:
 - $\lambda > 0.5$: event is a signal
 - $\lambda \leq 0.5$: event is a background
 - Model did not change at all
 - simply changing the cutting threshold will result in different TPR & FPR
 - We need a threshold-independent metric to compare model performance!



n		
		_



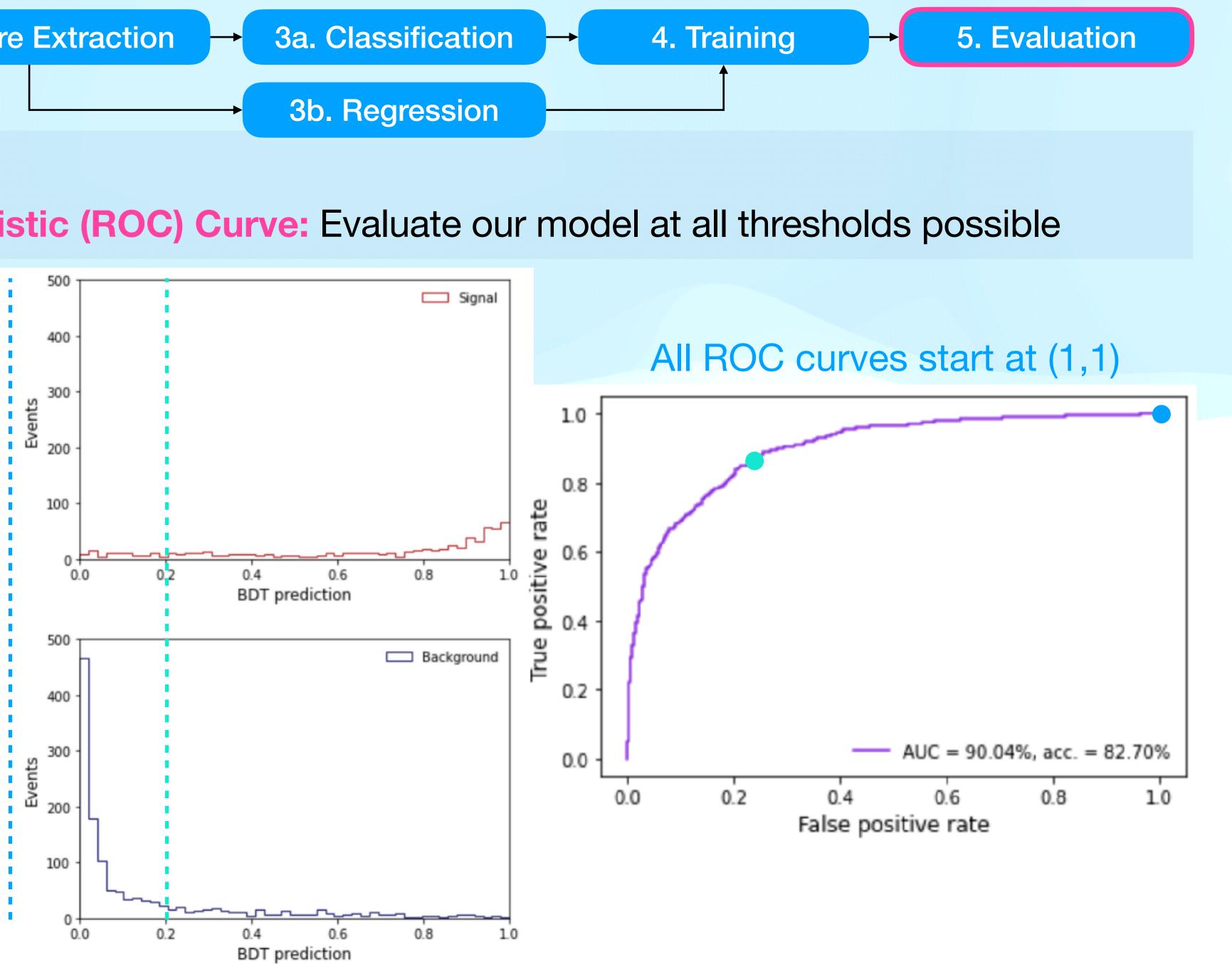


Cutting at -0.1:

- TPR = 100%
- FPR = 100%•

Cutting at 0.2:

- **TPR = 87%**
- FPR = 24%



Cutting at -0.1:

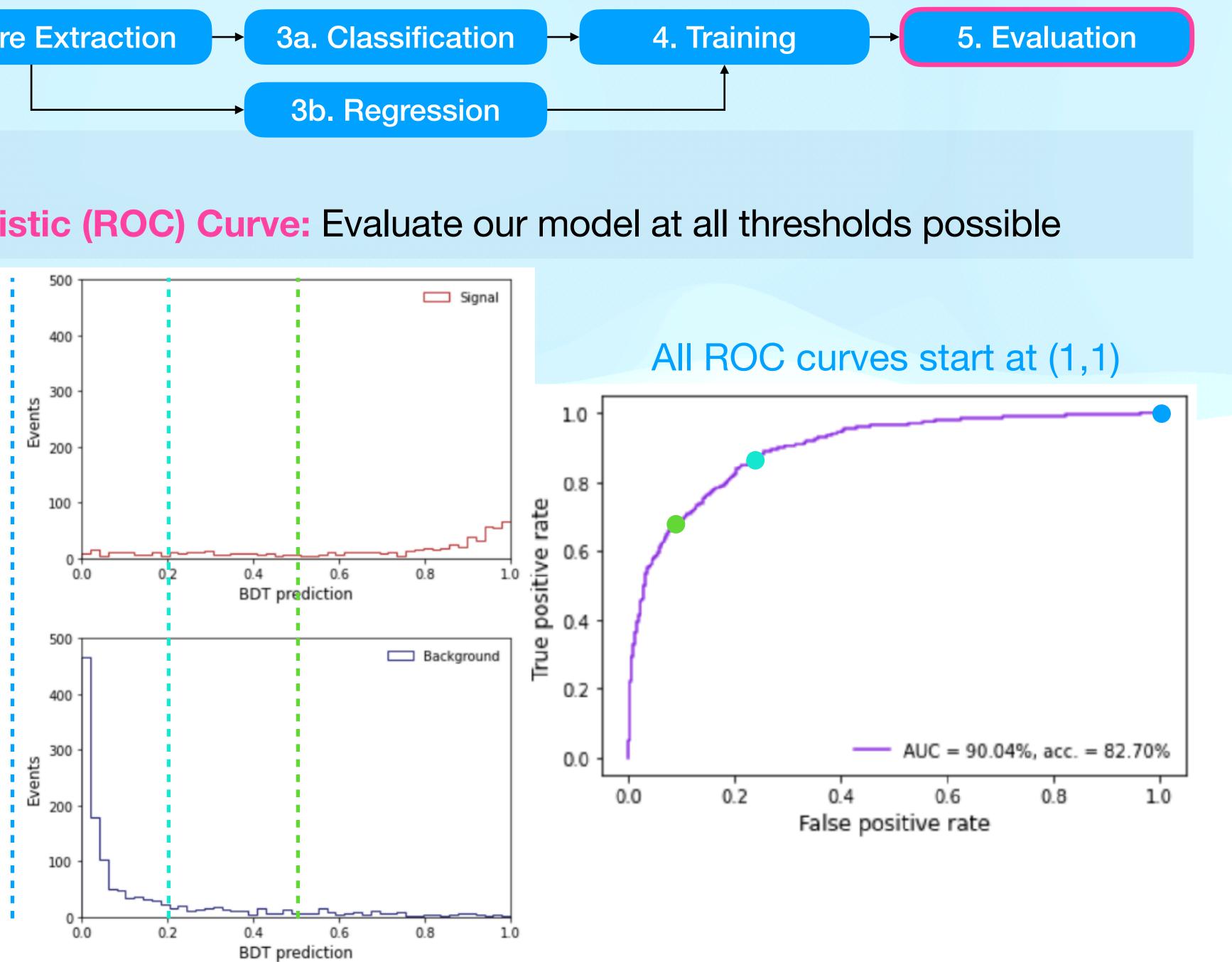
- TPR = 100%
- FPR = 100%

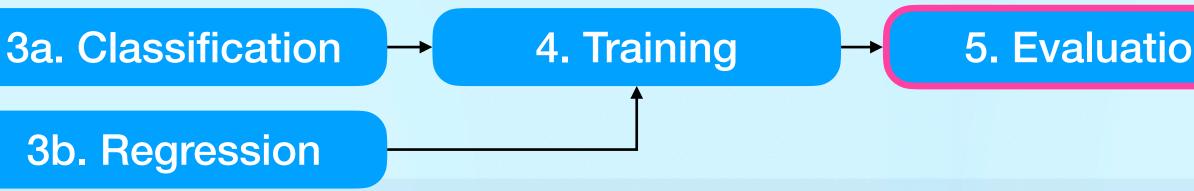
Cutting at 0.2:

- **TPR = 87%**
- FPR = 24%

Cutting at 0.5:

- TPR = 70%
- FPR = 10% \bullet





Cutting at -0.1:

- TPR = 100%
- FPR = 100%

Cutting at 0.2:

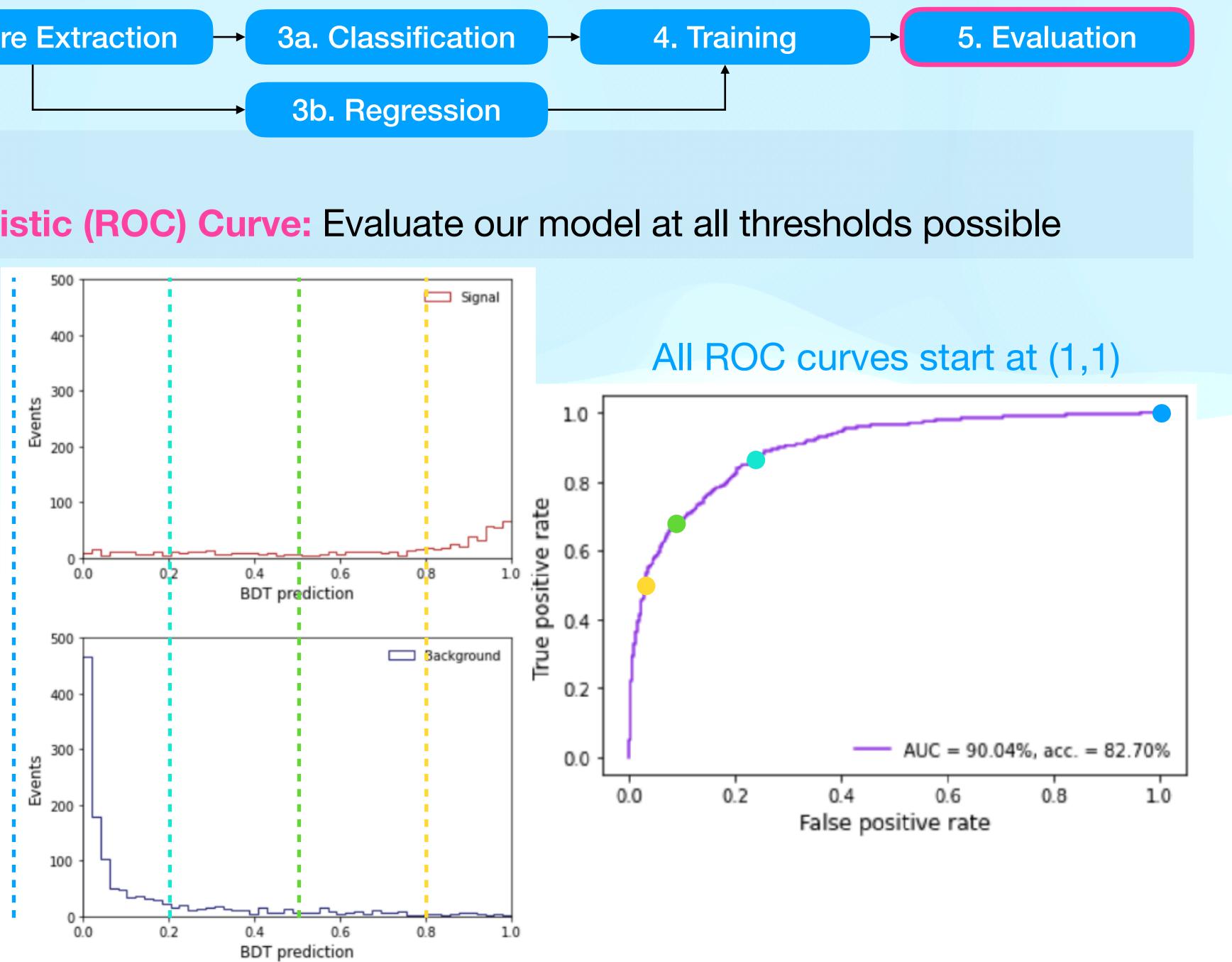
- TPR = 87%
- FPR = 24%

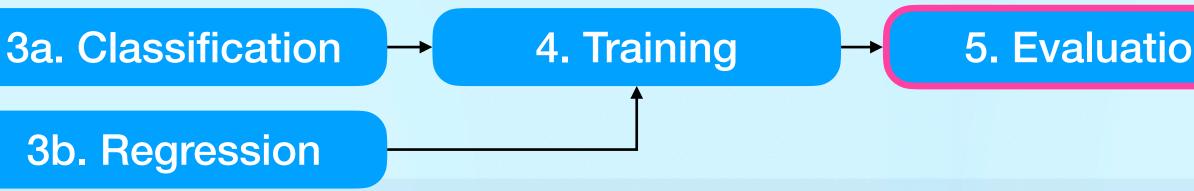
Cutting at 0.5:

- TPR = 70%
- FPR = 10% \bullet

Cutting at 0.8:

- TPR = 50%
- FPR = 3%





Cutting at -0.1:

- TPR = 100%
- FPR = 100%

Cutting at 0.2:

- TPR = 87%
- FPR = 24%

Cutting at 0.5:

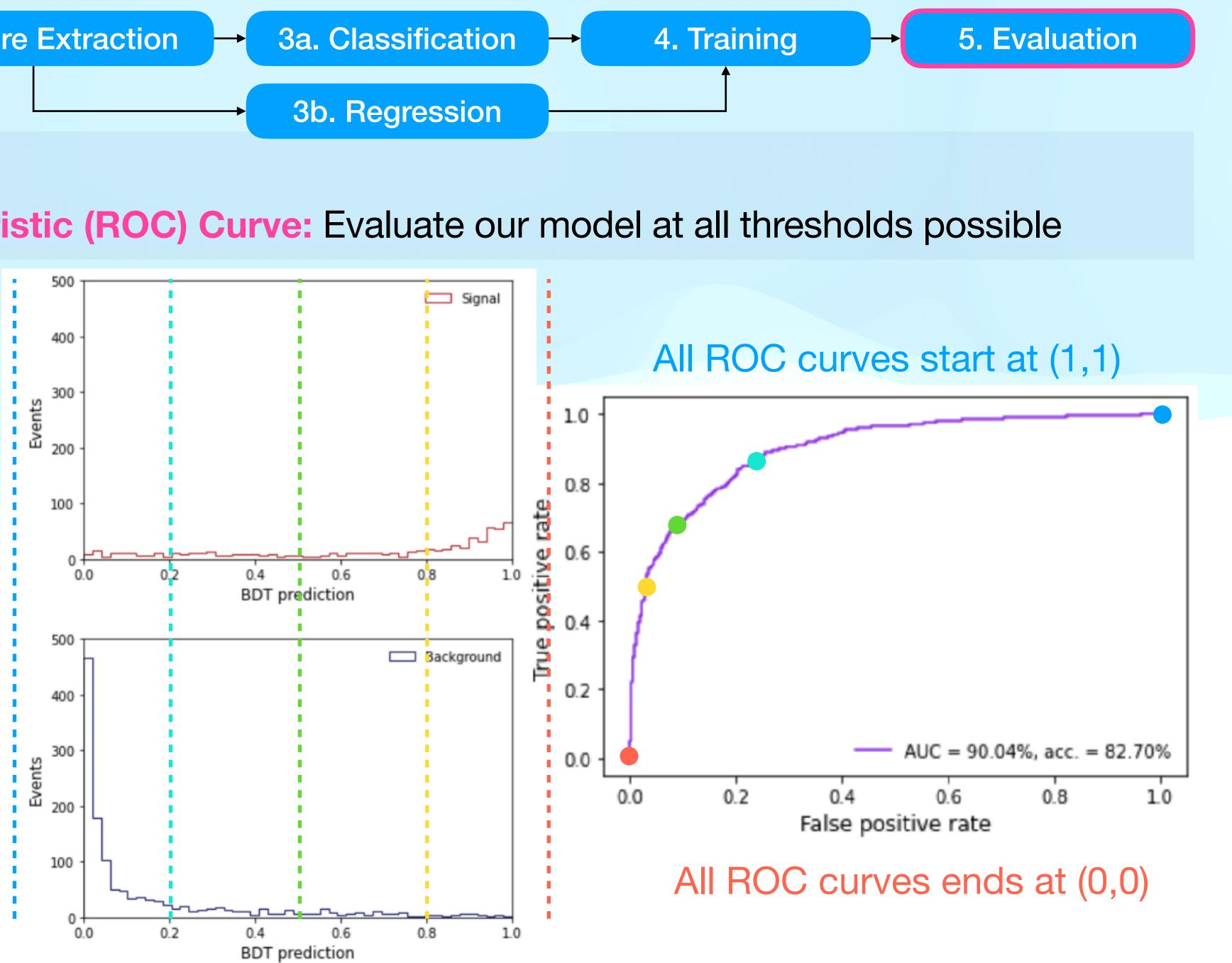
- TPR = 70%
- FPR = 10%

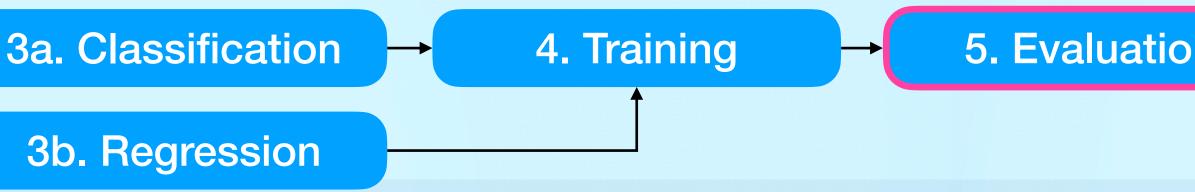
Cutting at 0.8:

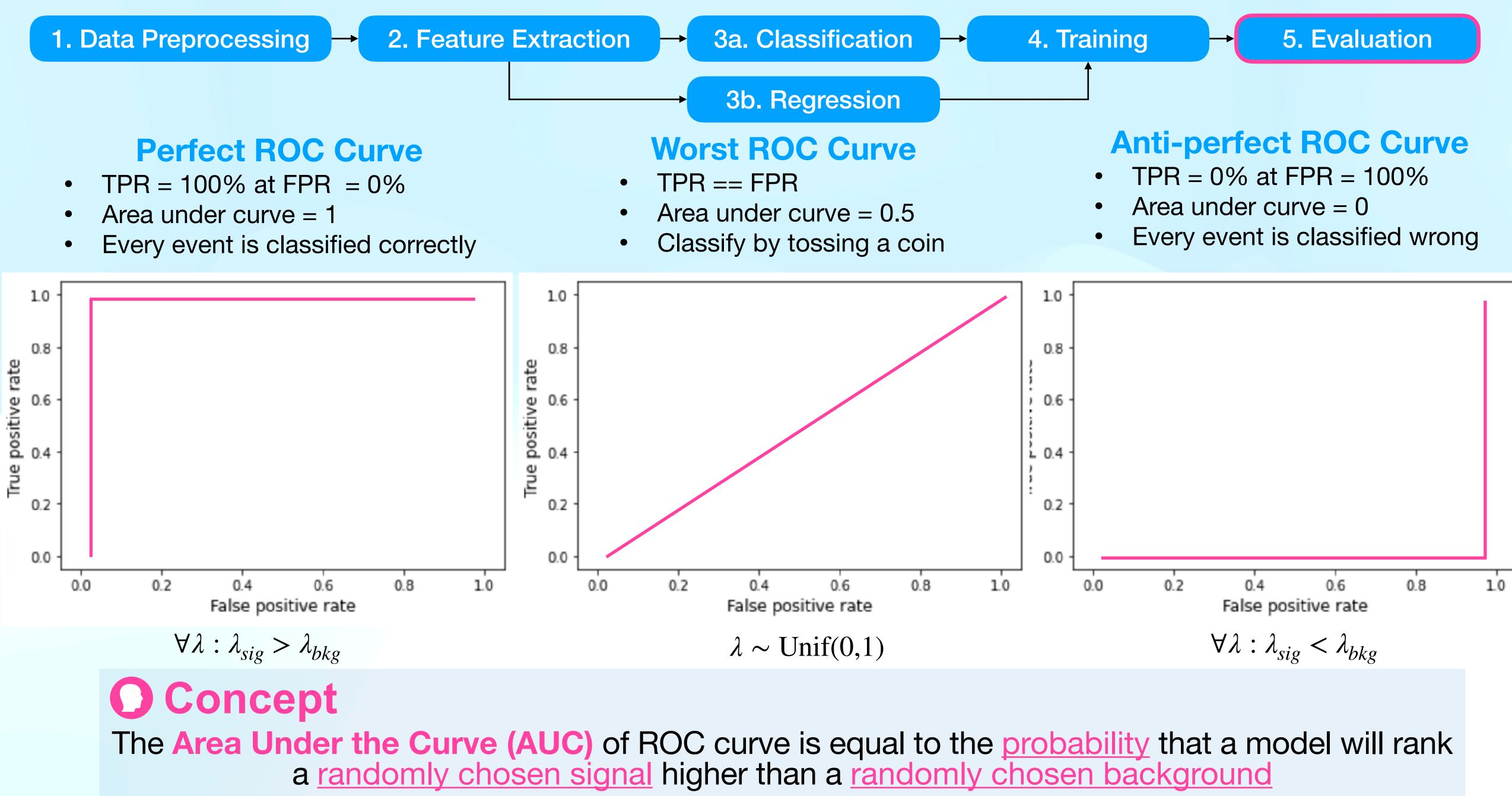
- TPR = 50%
- FPR = 3%

Cutting at 1.1:

- TPR = 0%lacksquare
- FPR = 0%

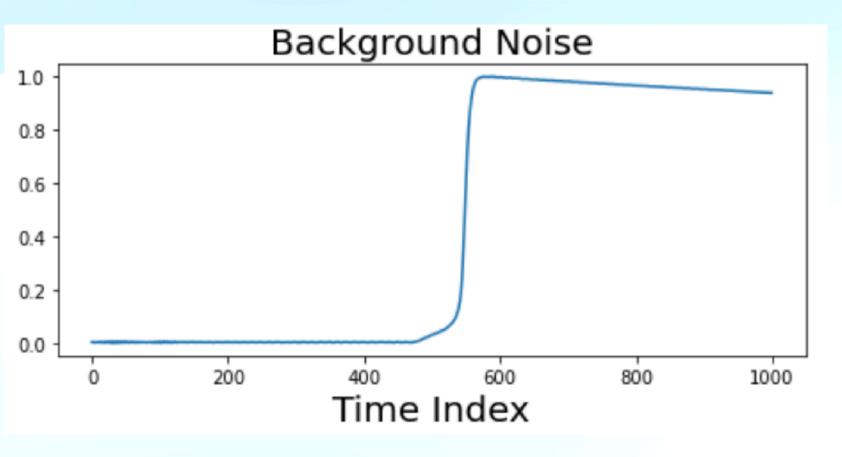






2. Feature Extraction

Time Series Data (BATCH_SIZE, 1000)



O Concept

NNLayer(1000,512) $\rightarrow \sigma$ \rightarrow NNLayer(512, 256) $\rightarrow \sigma$ \rightarrow NNLayer(256, 32) $\rightarrow \sigma$

3a. Classification

4. Training

5. Evaluation

3b. Regression

O Concept

Binary Classification 1

Task Layer: NNLayer(32, 1) \rightarrow One float point No.

- After training, it can be onsidered as a "classification score":
 - Higher score means the answer is more likely "yes"
 - Lower score means the answer is more likely "no"
 - A threshold is need to distinguish "yes" from "no"

o: torch.sigmoid(x)

Loss Function: torch.nn.BCELoss()

O Concept

Regression 1

Task Layer: NNLayer(32, 1) \rightarrow One float point No. between [-inf, inf]

σ:

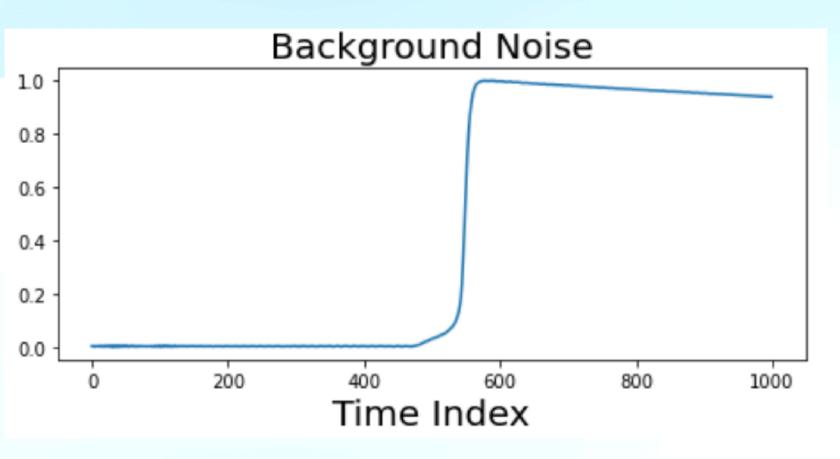
- None if you want to fit a physics quantity like energy
- torch.sigmoid(x) if you want to model a percentage like efficiency

Loss Function: torch.nn.MSELoss()

• $L = (TL_Output - Energy)^2$ for energy reconstruction

2. Feature Extraction

Time Series Data (BATCH_SIZE, 1000)



O Concept Feature Extractor Network

Take raw data as the input and output a low-dimensional vector

NNLayer(1000,512) $\rightarrow \sigma$

 \rightarrow NNLayer(512, 256) $\rightarrow \sigma$

 \rightarrow NNLayer(256, 32) $\rightarrow \sigma$

5. Evaluation

3b. Regression

O Concept

Binary Classification 1

Task Layer: NNLayer(32, 1) \rightarrow One float point No.

- After training, it can be onsidered as a "classification score":
 - Higher score means the answer is more likely "yes"
 - Lower score means the answer is more likely "no"
 - A threshold is need to distinguish "yes" from "no"

σ: torch.sigmoid(x)

Loss Function: torch.nn.BCELoss()

O Concept

Regression 1

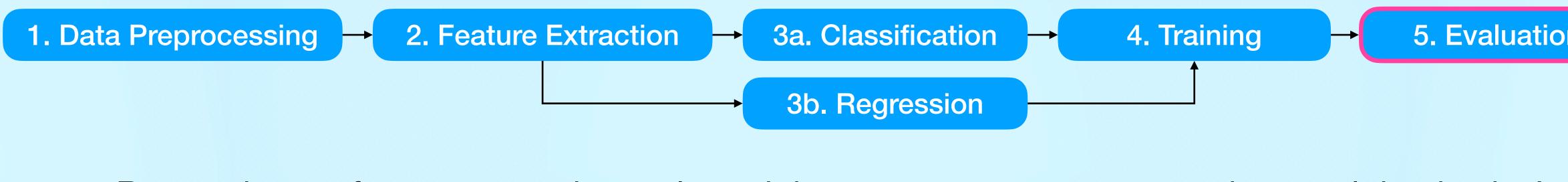
Task Layer: NNLayer(32, 1) \rightarrow One float point No. between [-inf, inf]

σ:

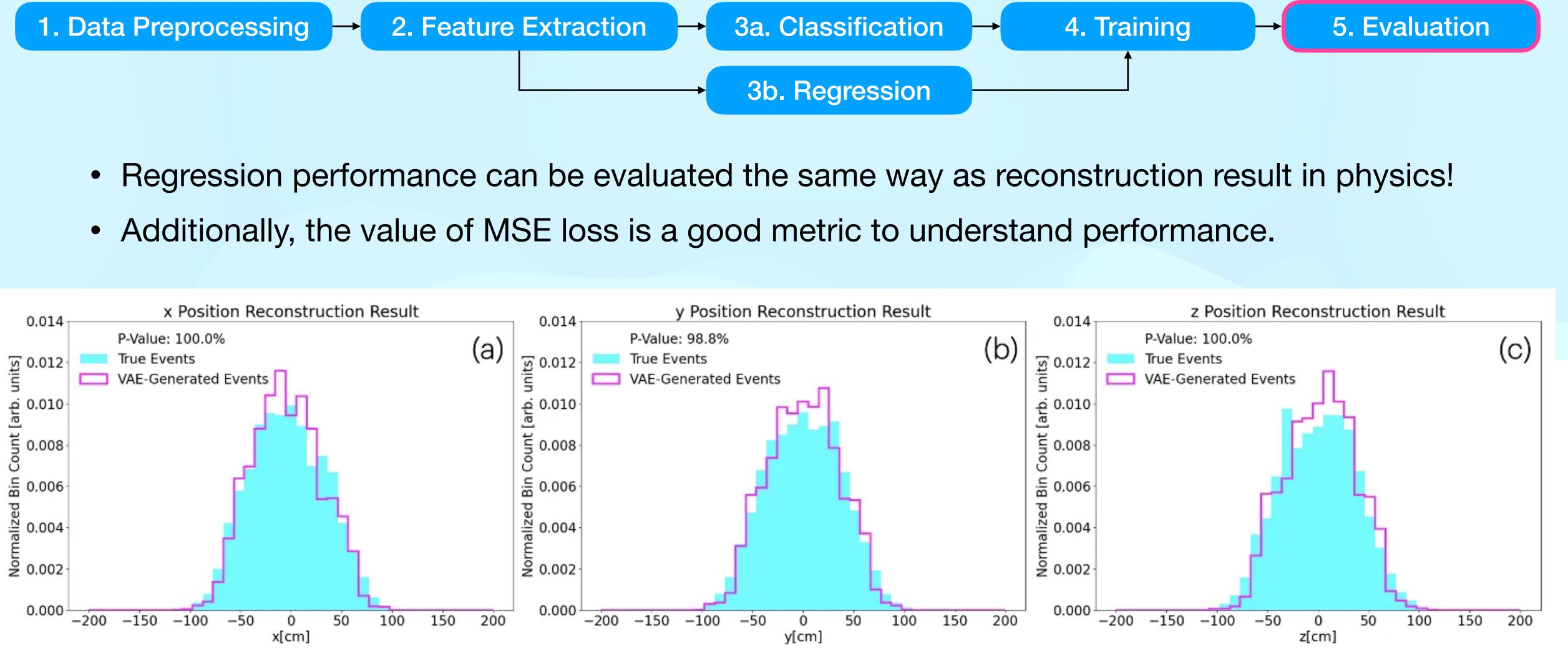
- None if you want to fit a physics quantity like energy
- torch.sigmoid(x) if you want to model a percentage like efficiency

Loss Function: torch.nn.MSELoss()

• $L = (TL_Output - Energy)^2$ for energy reconstruction



- Additionally, the value of MSE loss is a good metric to understand performance.

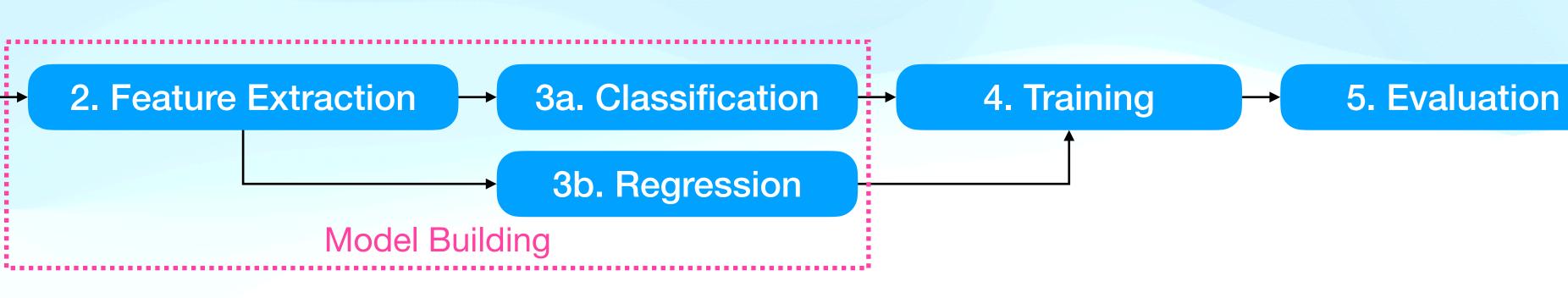


https://link.springer.com/article/10.1140/epjc/s10052-024-12980-7

2. Feature Extraction

Model Building

 \rightarrow

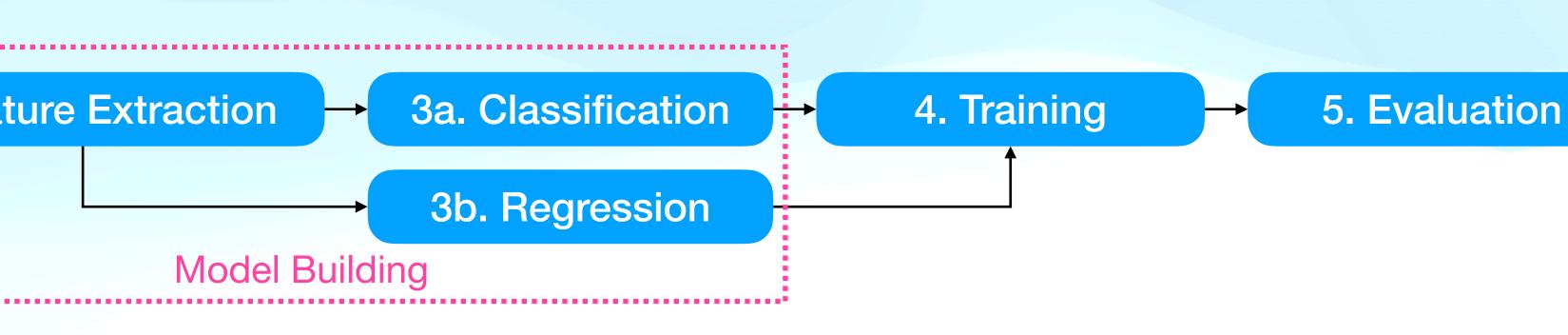


- 1. Majorana Demonstrator Dataset and HPGe Detector
- PyTorch Dataset Class 2.
- 3. Data pre-processing: transform your data to remove unwanted informations

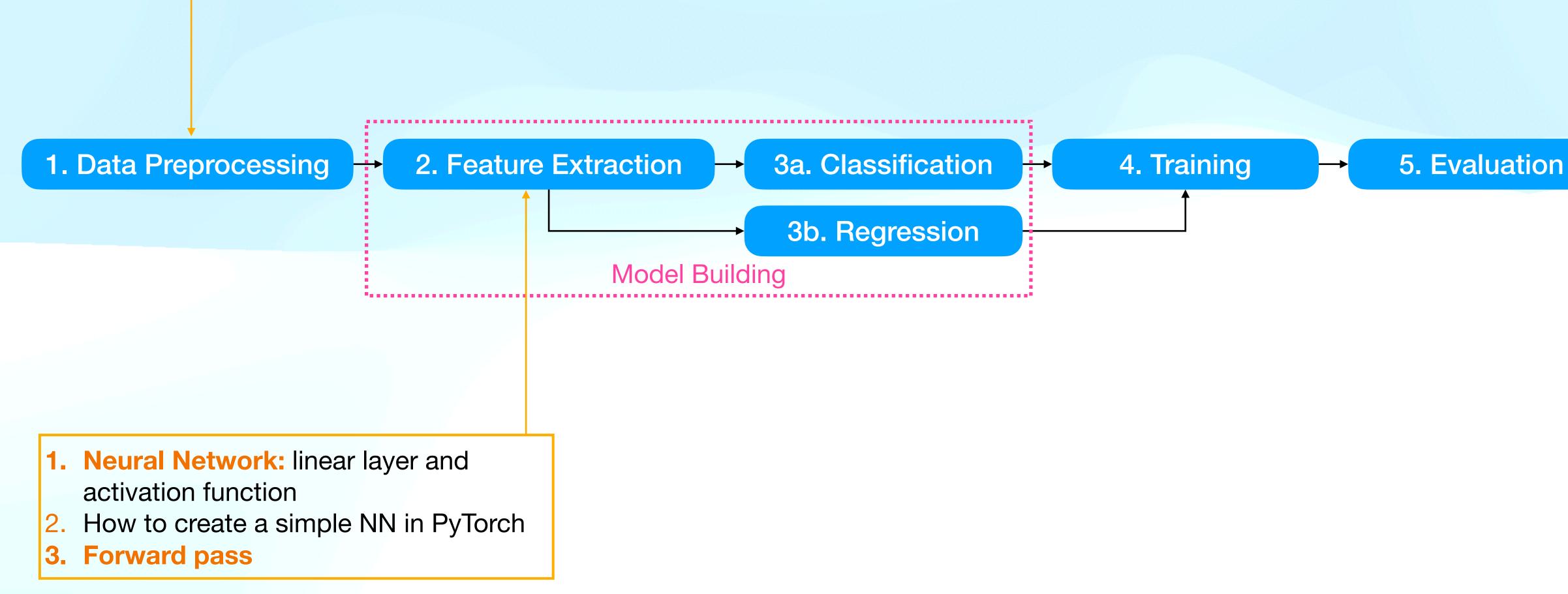
2. Feature Extraction

4. Wrap dataset object to create a data loader

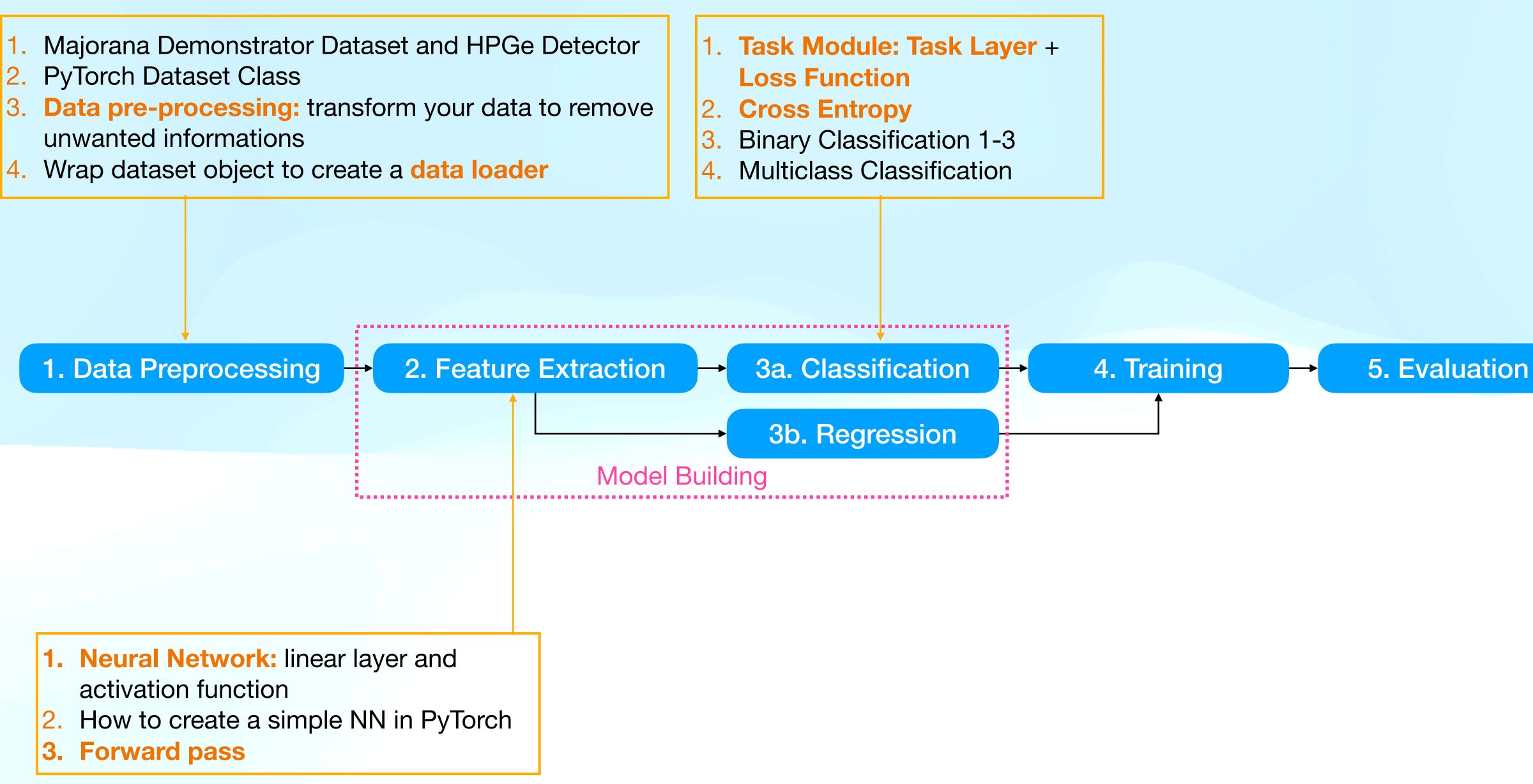
1. Data Preprocessing



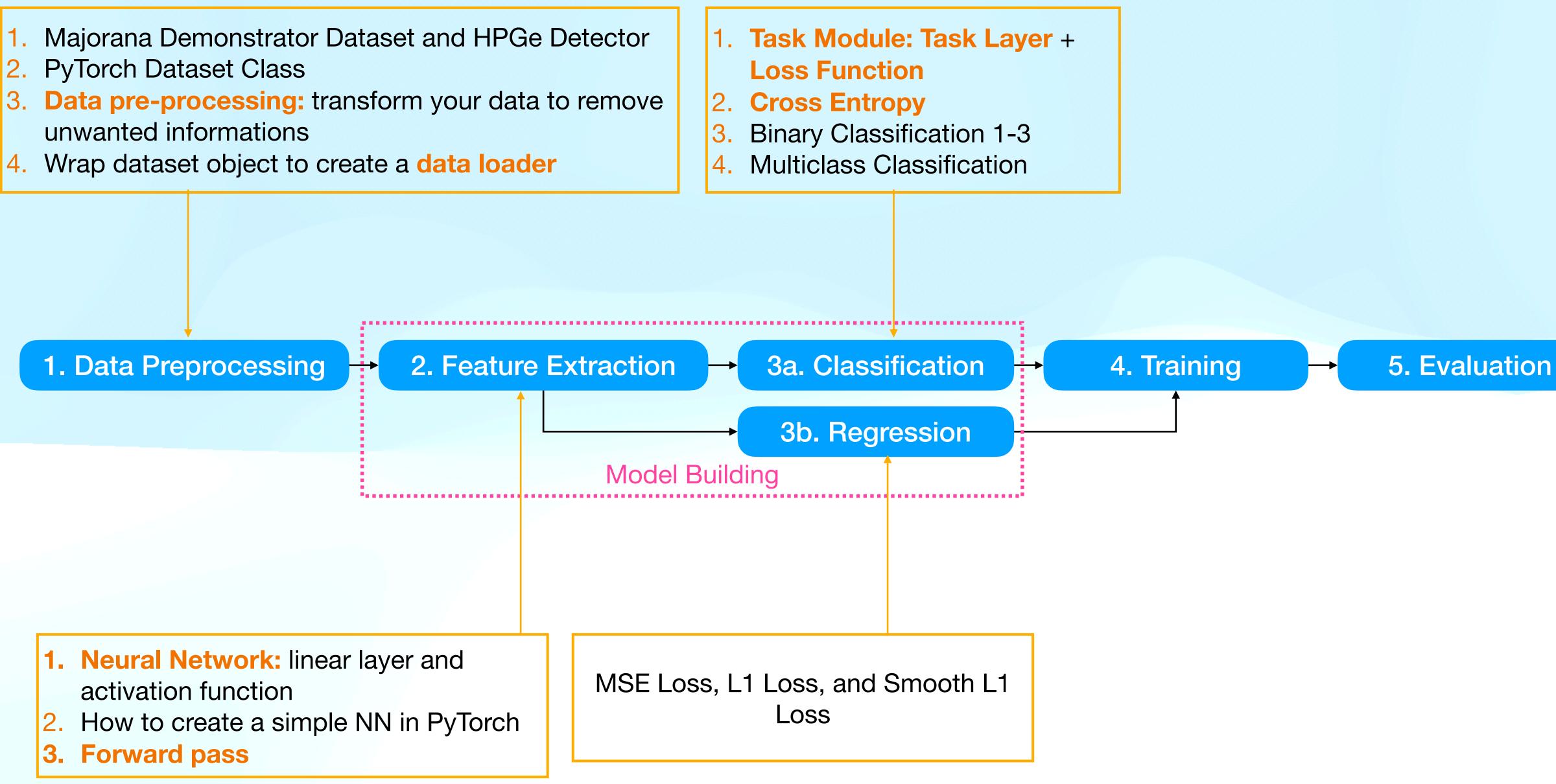
- Majorana Demonstrator Dataset and HPGe Detector 1.
- PyTorch Dataset Class 2.
- **Data pre-processing:** transform your data to remove 3. unwanted informations
- Wrap dataset object to create a data loader 4.



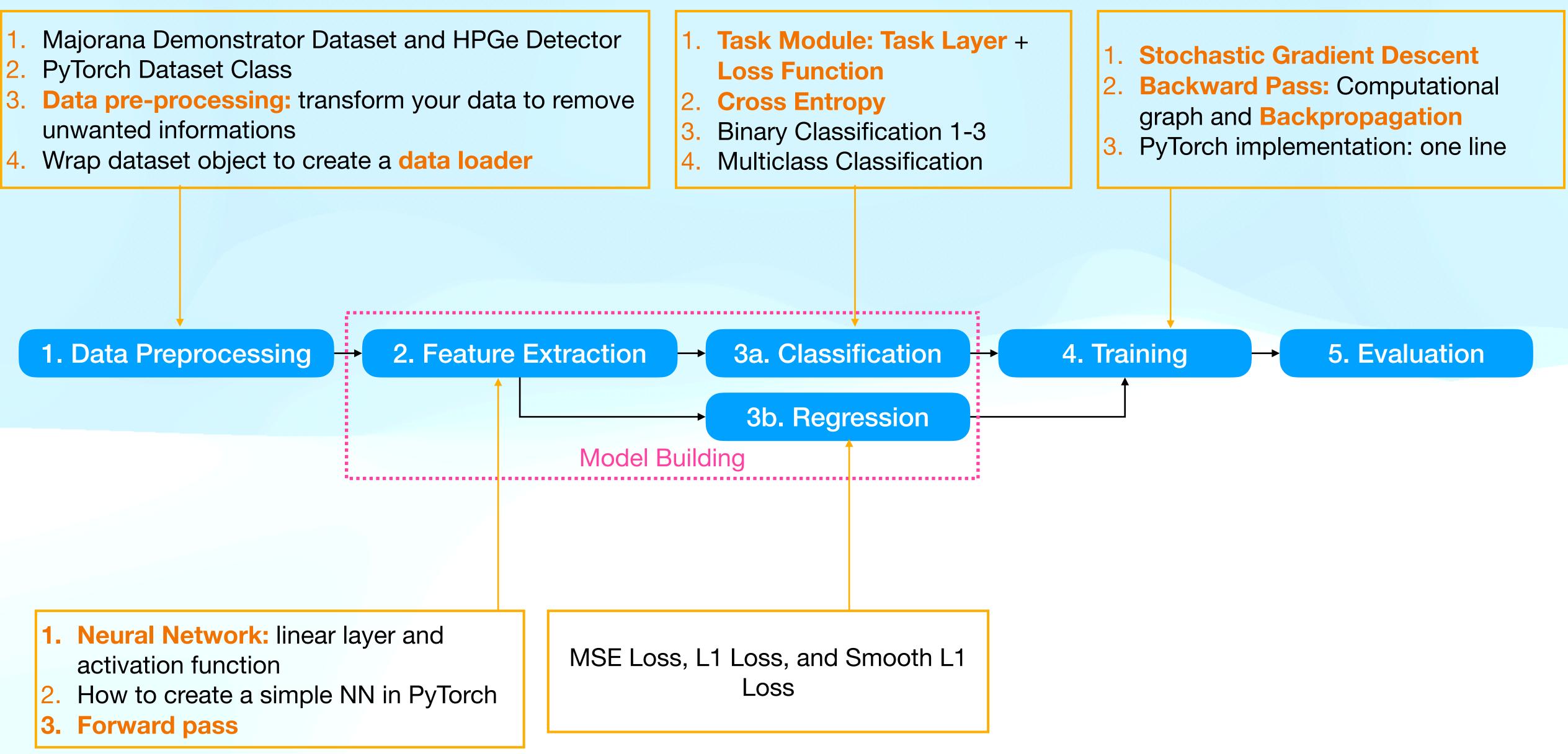
- unwanted informations



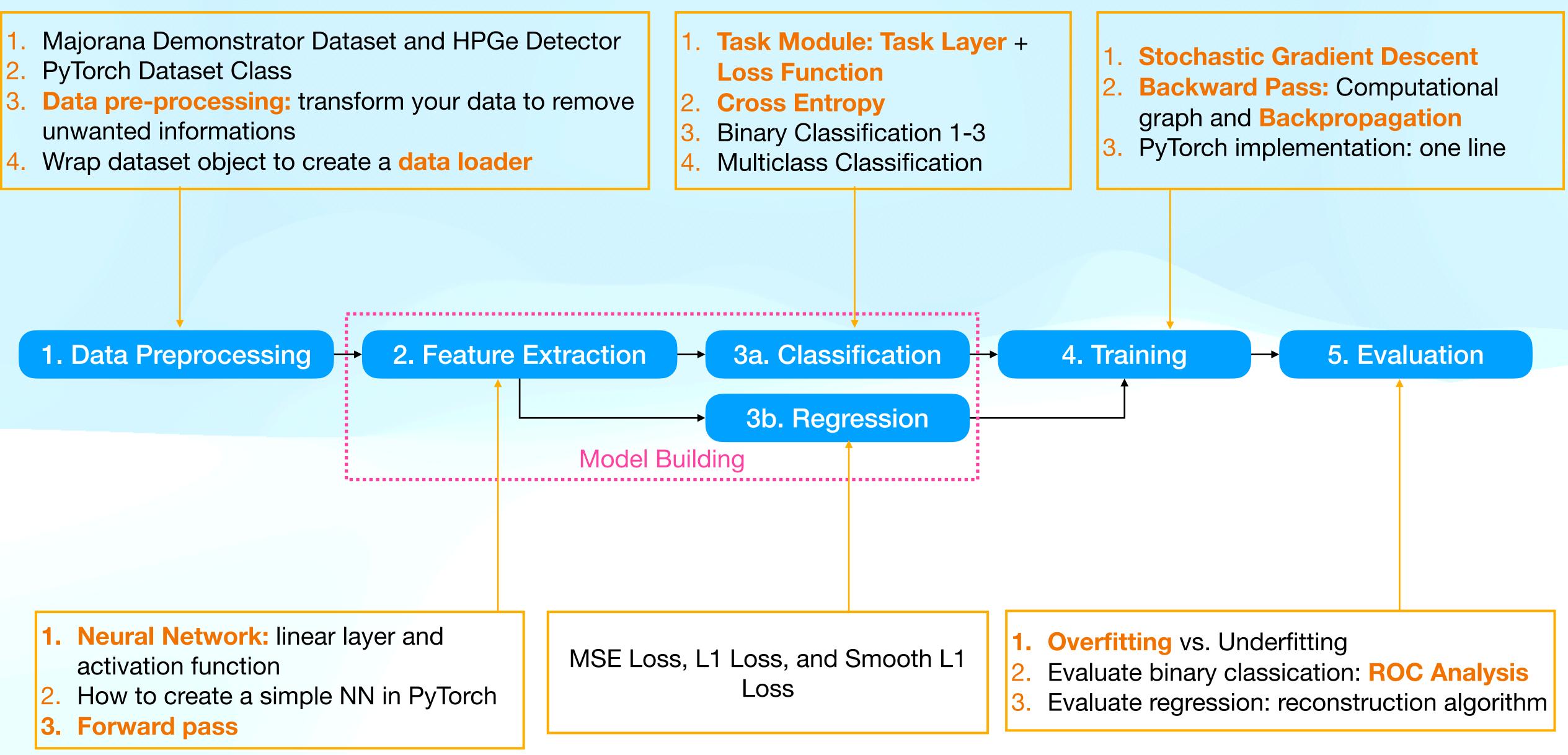
- unwanted informations



- unwanted informations



- unwanted informations



Some Useful Links

All lecture materials: Link Jupyter Notebook Code: Link

O Concept

The Practical Machine Learning

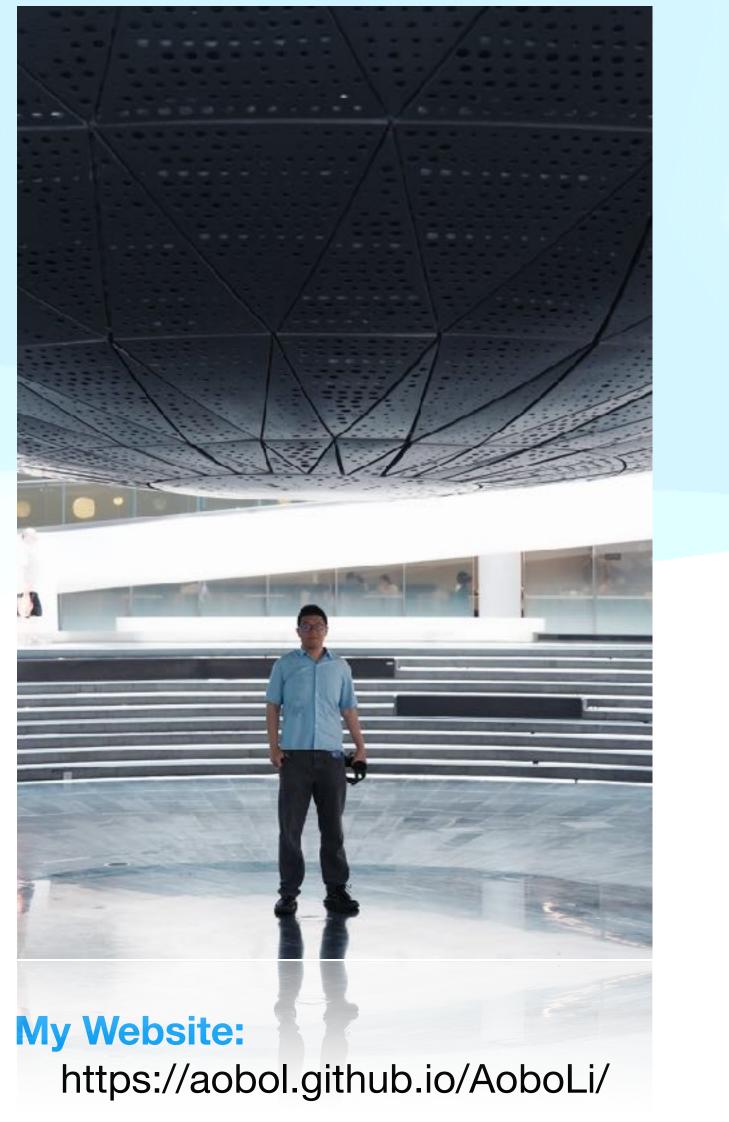
https://pire.gemadarc.org/education/school21/#ai

2024 Summer Bootcamp on Deep Learning and Applications https://ai-bootcamp2024.github.io/

MIT 6.S191 Introduction to Deep Learning

http://introtodeeplearning.com/

Andrew Ng: Deep Learning Specialization Link



My Email Addresses: aol002@ucsd.edu