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Why Do I Want To Give This Lecture
There is a “Gap” between Nuclear Physics and AI/ML 

• AI/ML is a huge field with many different research directions


• As physicists, we prefer to approach problem in the physics way, but there is also an “AI/ML way” for the same problem


Lecture 1 sets up the foundation to understand more advanced AI/ML concepts 

• Lots of technical details in Lecture 1, but not this lecture


• Main Objective: Connecting dots between AI/ML research directions and NP 

• “Not with all details, but I know there is an existing AI/ML methods that could solve my problem”

        
Questions I received from nuclear physics students

Nuclear Physics

        

Research directions in AI/ML that could help solving NP challenges
AI/ML
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Raw Data Data Preprocessing

Feature Engineering

Input Data Feature Extraction Representation Task Module Output

Tabular Data Classical Machine Learning Model

1. Data Preprocessing 2. Feature Extraction 4. Training3a. Classification

3b. Regression

5. Evaluation

Model Building

1. Majorana Demonstrator Dataset and HPGe Detector

2. PyTorch Dataset Class

3. Data pre-processing: transform your data

4. Wrap dataset object to create a data loader

1. Neural Network: linear layer and 
activation function


2. How to create a simple NN in PyTorch

3. Forward pass

1. Task Module: Task Layer + 
Loss Function 

2. Cross Entropy

3. Binary Classification 1-3

4. Multiclass Classification

MSE Loss, L1 Loss, and Smooth L1 
Loss

1. Stochastic Gradient Descent 
2. Backward Pass: Computational 

graph and Backpropagation

3. PyTorch implementation: one line

1. Overfitting vs. Underfitting

2. Evaluate binary classication: ROC Analysis 
3. Evaluate regression: reconstruction algorithm
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Raw Data Data Preprocessing

Feature Engineering

Input Data Feature Extraction Representation Task Module Output

Tabular Data Classical Machine Learning Model

ARTIFICIAL INTELLIGENCE

MACHINE LEARNING

DEEP LEARNING

Physics

Nuclear Physics

Neutrinoless Double-
Beta Decay
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Raw Data Data Preprocessing

Feature Engineering

Input Data Feature Extraction Representation Task Module Output

Tabular Data Classical Machine Learning Model

Nuclear Physics
Q1: In Lecture 1, we started from raw MAJORANA DEMONSTRATOR waveforms, the lowest level of HPGe detector. Do we always have 
to start from low level data?

No, we can start from higher level parameters with a procedure called Feature Engineering

AI/ML

Energy

Drift Time
Reflect the location of incident particle

AvsE
For multi-site background rejection

Tail Slope
For surface background rejection

Single-Site Waveform Multi-Site Waveform
5
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Raw Data Data Preprocessing

Feature Engineering

Input Data Feature Extraction Representation Task Module Output

Tabular Data Classical Machine Learning Model
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Waveform 1

Waveform 2

Waveform 3

……

Waveform 
65,000

Tail Slope Energy AvsE Drift Time
Tabular Data

• Usually has much lower dimension than raw 

data


• Obtained through Feature Engineering process


• Extracting useful/representative informations 
into a few quantitative parameters


• Prior knowledge can be incorporated during 
this process


• This means our understanding of Nuclear 
Physics can be incorporated
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Raw Data Data Preprocessing

Feature Engineering

Input Data Feature Extraction Representation Task Module Output

Tabular Data Classical Machine Learning Model
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Deep Neural Networks can be used to analyze Tabular Data, but it’s usually not the best model… 
• DNN is particularly powerful for high dimensional data, but Tabular data is usually low dimensional

• DNN lacks some very useful features some other models have

Support Vector Machine (SVM) 
• Draw a hyperplane between two clusters of tabular data

• Maximize the margin between hyperplane and the 

support vector (closest data point to the hyperplane)

Advantages of SVM 
• Very clear and analytical Decision Boundary between 

signal and background

• Unlike DNN which is data-hungry, SVM is robust with 

small amount of training data 
• Kernel method could transform the data into a space 

where they are linearly separable
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Raw Data Data Preprocessing

Feature Engineering

Input Data Feature Extraction Representation Task Module Output

Tabular Data Classical Machine Learning Model

8

Deep Neural Networks can be used to analyze Tabular Data, but it’s usually not the best model… 
• DNN is particularly powerful for high dimensional data, but Tabular data is usually low dimensional

• DNN lacks some very useful features some other models have

Boosted Decision Tree (BDT) 
• Decision Tree: Make decision by asking a series of binary questions

• Boosting Algorithms: iteratively grow many weak classifier and 

aggregate  them to create a strong classifier

Advantages of BDT 
• Ensemble Learning: BDT and other ensemble learning 

methods usually achieves the best performance in 
Kaggle challenges 

• Naturally come with some level of interpretability
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9

Deep Neural Networks can be used to analyze Tabular Data, but it’s usually not the best model… 
• DNN is particularly powerful for high dimensional data, but Tabular data is usually low dimensional

• DNN lacks some very useful features some other models have

Boosted Decision Tree (BDT) 
• Decision Tree: Make decision by asking a series of binary questions

• Boosting Algorithms: iteratively grow many weak classifier and 

aggregate  them to create a strong classifier

Advantages of BDT 
• Ensemble Learning: BDT and other ensemble learning 

methods usually achieves the best performance in 
Kaggle challenges 

• Naturally come with some level of interpretability

The Disadvantage of BDT and SVM is exactly the advantage of neural networks … 
• BDT & SVM is very slow on high-dimensional data (i.e. raw detector output)

• BDT & SVM is less customizable than deep neural networks

• BDT & SVM cannot achieve more complicated tasks like data generation
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Nuclear Physics
Q2: My experiment does not produce short waveforms/time series data like MAJORANA DEMONSTRATOR does, it produces more 
complicated high-dimensional data. what should I use as my feature extraction network?

The exact model to use depends on how you pre-process your data into the input format

AI/ML
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Raw Data Data Preprocessing

Feature Engineering

Input Data Feature Extraction Representation Task Module Output

Tabular Data Classical Machine Learning Model

Liquid Scintillator

Inner Detector PMTs 
1325 17inch + 554 20inch
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(R, θ, ϕ, t, q)

18m

Temporal and Spatial InformationDecay Schemes Schematic Diagram of Detector

136Xe Excited-State Decay (Signal)

214Bi Decay (Background)

Xenon LS

Mini-balloon

1. Time Series

2. 2D Image 3. Spatiotemporal Data (2D Movie)

Triggered PMT

4. Point Cloud Data

11
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• The exact model to use depends on how you pre-process your data into the input format.

• Convolutional Neural Network (CNN) is a good model for multiple data types in general.

AI/ML
� EQUIVARIANCE IN MACHINE LEARNING 5

Figure 1: An illustration of the di�erences between symmetry group invariance and equivariance for the
example case of identifying a handwritten letter in an image. Here, 5 : - ! . is a map between vector spaces
- and . . d6 (G) ⌘ d(6, G) is an action of a group ⌧ on - and d

0
6 (H) ⌘ d

0(6, H) is an action of a group ⌧ on
. . The invariant model (left) will output the same result on both the original and translated images, while the
equivariant model (right) will transform the translated image in a way that reflects the underlying symmetry
group. More formally, this means that the map 5 is equivariant with respect to the actions d : ⌧ ⇥ - ! -

and d
0 : ⌧ ⇥ . ! . if 5 (d6 (G)) = d

0
6 ( 5 (G)) for all G 2 - and 6 2 ⌧.
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- and . . d6 (G) ⌘ d(6, G) is an action of a group ⌧ on - and d

0
6 (H) ⌘ d

0(6, H) is an action of a group ⌧ on
. . The invariant model (left) will output the same result on both the original and translated images, while the
equivariant model (right) will transform the translated image in a way that reflects the underlying symmetry
group. More formally, this means that the map 5 is equivariant with respect to the actions d : ⌧ ⇥ - ! -

and d
0 : ⌧ ⇥ . ! . if 5 (d6 (G)) = d

0
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• The exact model to use depends on how you pre-process your data into the input format.

• Convolutional Neural Network (CNN) is a good model for multiple data types in general.

AI/ML
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32

these are the inductive biases of convolutional neural networks

special case of standard (fully-connected) neural networks

⌃

fully-connected

⌃

convolutional

weight savings

convolutional

⌃

⌃

(same weights)

fully-connected

⌃

⌃

(different weights)

weight savings

these inductive biases make the number of weights independent of the input size!

Fully connected networks are not translation equivariant

Fully Connected Neural Network (last lecture) 
• Fully-connected neural networks are not translation invariant 
• Also has a huge parameter space:


• 2 million parameters for 1920⨉1080 image

13
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• The exact model to use depends on how you pre-process your data into the input format.

• Convolutional Neural Network (CNN) is a good model for multiple data types in general.

AI/ML

Filter weights: 

(
0 1 2
2 2 0
0 1 2)

Convolution 
• The only linear and translation-equivariant operations

• Scan n filters throughout the 2D images


• n is the channel of CNN

14
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• The exact model to use depends on how you pre-process your data into the input format.

• Convolutional Neural Network (CNN) is a good model for multiple data types in general.

AI/ML

7
31

let’s convert locality and translation invariance into inductive biases

locality
nearby areas tend 
to contain stronger 

patterns

inputs can be 
restricted to regions

⌃

maintain spatial ordering

translation 
invariance
relative positions 

are relevant

same filters can be applied 
throughout the input 

⌃

⌃

same weights

Input Image

Feature Map

15



Deconvolution 
Feature map larger than input image

Raw Data Data Preprocessing

Feature Engineering

Input Data Feature Extraction Representation Task Module Output

Tabular Data Classical Machine Learning Model
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• The exact model to use depends on how you pre-process your data into the input format.

• Convolutional Neural Network (CNN) is a good model for multiple data types in general.

AI/ML

Input Image

Feature Map

Input Image

Feature Map

Convolution 
Feature map smaller than Input Image

 input


 filter


 stride


No zero padding


➡    output

5 × 5

3 × 3

2 × 2

2 × 2

 input


 filter


 stride


• “Full” zero 
padding


➡    output

5 × 5

3 × 3

1 × 1

7 × 7
16
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• The exact model to use depends on how you pre-process your data into the input format

• Convolutional Neural Network (CNN) is a good model for multiple data types in general

AI/ML

18m

Temporal and Spatial InformationDecay Schemes Schematic Diagram of Detector

136Xe Excited-State Decay (Signal)

214Bi Decay (Background)

Xenon LS

Mini-balloon

1. Time Series 1D CNN

2. 2D Image 2D CNN

3. Spatiotemporal Data 3D CNN

4. Point Cloud Data Can’t use CNN 
PointNet/Graph Neural Network are better options

CNN is a general-purpose model 
• Adaptability: can serve as the feature extractor for 1D, 2D, 3D, or even 4D data


• For 4D, using 3D CNN + channel as additional dimension 
• Baseline Model: when starting your own machine learning project, it’s always good to first build 

a CNN on your data to produce a baseline classification/regression result
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• The exact model to use depends on how you pre-process your data into the input format

• Convolutional Neural Network (CNN) is a good model for multiple data types in general

• Enhance neural network’s performance by encoding symmetries with Geometric Deep Learning

AI/ML

LSTM 
LSTM (without Convolution) is efficient against time series data for similar reasons

1st Value 2nd Value 3rd Value

18
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• The exact model to use depends on how you pre-process your data into the input format

• Convolutional Neural Network (CNN) is a good model for multiple data types in general

• Enhance neural network’s performance by encoding symmetries with Geometric Deep Learning

AI/ML

θ

φ φ

θθ

φ φ

θ

θ

φ φ

θ

Spherical CNN 
SO(3) symmetry & rotational invariance 

Similar model exists for cylindrical detectors or other geometries

Cohen, Taco et al. “Spherical 
CNNs.” ICLR 2018
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• The exact model to use depends on how you pre-process your data into the input format

• Convolutional Neural Network (CNN) is a good model for multiple data types in general

• Enhance neural network’s performance by encoding symmetries with Geometric Deep Learning

AI/ML

Computer simulation for neutrinoless double beta decay signal 
and background events 

Wrote PMT model that allows us to vary two Information 
Parameters: 

23% 23%100% PC, 100% QE 20% PC, 100% QE 100% PC, 23% QE 20% PC, 23% QE

Perfect Detector

better detector, more information in data

Realistic KamLAND-Zen Hardware

• Photocoverage (PC) 

• Quantum Efficiency (QE)

Benchmark model performance 
under different input conditions

A. Li et al.,  
DOI: 10.1016/j.nima.2019.162604
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• The exact model to use depends on how you pre-process your data into the input format

• Convolutional Neural Network (CNN) is a good model for multiple data types in general

• Enhance neural network’s performance by encoding symmetries with Geometric Deep Learning

AI/ML

Better Performance 
Across entire map, 61% → 74% background rejection 

at KamLAND-Zen hardware configuration

More Robust 
Smoother transition from low to high information parameters 

Every bit of additional information is absorbed by KamNet

2D CNN Information Parameter Map KamNet Information Parameter Map

A. Li et al, 
Phys. Rev. C 107, 
014323 (2023)
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Nuclear Physics
Q3: Can I use deep learning methods for event simulation?

Yes! Use Generative Models: Variational Autoencoder (VAE), Generative Adversarial Network (GAN), or Diffusion Model

AI/ML

22

Representation Decoder Network Input Data

Convolutional Autoencoder 
• Concatenating two CNNs back-to-back


• Encoder: convolution layers

• Decoder: deconvolution layers


• Train by minimizing MSE loss between input image 
and reconstructed image


• Each image is encoded into the representation, and 
can be reconstructed from the representation by the 
decoder


• Convolutional Autoencoder is NOT a generative model 
because we cannot sample from the represnetation
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Nuclear Physics
Q3: Can I use deep learning methods for event simulation?

AI/ML

23

MSE Loss

KL Divergence Loss: DKL(𝒩(x |μ1, σ1) | |𝒩(x |0,1)) = − log(σ1) + σ2
1 + μ2

1 − 0.5
Variational Autoencoder 

• In Convolutional Autoencoder, the representation contains 
all information needed to reconstruct an image


• But the representation does not follow any particular 
distribution

• This means we cannot sample from it to generate new 

events

• Variational Autoencoder add another loss to regulate the 

latent space vector

• KL Divergence: measuring the distance between two 

probability distributions

• Additional loss term that regulates the representation to 

follow a Gaussian with 0 mean and 1 standard deviation

Encoder DecoderRepresentation Sample

Yes! Use Generative Models: Variational Autoencoder (VAE), Generative Adversarial Network (GAN), or Diffusion Model

Input Data Input Data
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Nuclear Physics
Q3: Can I use deep learning methods for event simulation?

AI/ML

24

Generative Adversarial Networks 
• A Decoder/Generator will generate a fake data from 

sampled random noise

• A Encoder/Discriminator will classify whether the input 

image is real or fake

• Adversarial Training: generator and discriminator fight 

each other during training


• Ex(log(D(x)) + Ez(1 − D(G(z)))

DecoderRepresentation Sample

Yes! Use Generative Models: Variational Autoencoder (VAE), Generative Adversarial Network (GAN), or Diffusion Model

Encoder
Input Data

Real/Fake Classification
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Nuclear Physics
Q4: Now I train a machine learning classifier with with simulated events (either with GEANT4 or generative model). But my simulated 
event looks different from real detector event. What should I do?

25

Paired Data

Cat 猫

Dog 狗

Cow ⽜

Unpaired Data

CatDog

Cow
狗

猪
猫

???

AI/ML
• Build a Cycle GAN to perform unpaired translation between simulation and data

Think of simulated events and real events as two different languages … 
• Simulation tuning: building a model that translate simulated events to real detector events

• Ideally, we will train our translation model between paired events, but those pairs are difficult to obtain
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AI/ML

26

• Build a Cycle GAN to perform unpaired translation between simulation and data

Cat
Dog

Cow

狗

⽜
苗

EN→CN Translation Network 
Autoencoder style

Discriminator Network
Does “苗” look like a 

chinese word?

猫

CN→EN Translation Network 
Autoencoder style
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AI/ML

27

• Build a Cycle GAN to perform unpaired translation between simulation and data

A. Li, J.Gruszko, et al. 
NeurIPS 22 ML4PS Workshop
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Nuclear Physics
Q4: Now I train a machine learning classifier with with simulated data (either with GEANT4 or generative model). But my simulated 
data looks different from real detector data. What should I do?

AI/ML

28

• Build a Cycle GAN to perform unpaired translation between simulation and data

• Domain Adaptation between simulated and real detector data

Transfer Learning 
Source Domain:  the domain from which the initial training data 
is drawn. 


• Data are typically labelled

• Simulated data in context of NP


Target Domain:  the domain to which the model needs to be 
adapted. 


• Data are typically unlabelled and looks different from the 
source domain


• Real detector data in context of NP

Task: classification or regression or other tasks

Raw Data Data Preprocessing

Feature Engineering

Input Data Feature Extraction Representation Task Module Output

Tabular Data Classical Machine Learning Model
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Nuclear Physics
Q4: Now I train a machine learning classifier with with simulated data (either with GEANT4 or generative model). But my simulated 
data looks different from real detector data. What should I do?

AI/ML

29

• Build a Cycle GAN to perform unpaired translation between simulation and data

• Domain Adaptation between simulated and real detector data

Simulated Data

Feature Extraction

Representation of Sim. Task Module Output

Real Detector Data Representation of Real

Encoder Real/Fake Classification

Classification/Regression Loss

Adversarial Loss

Ganin, Y., & Lempitsky, V. (2015).  
Unsupervised domain adaptation 

by backpropagation



Nuclear Physics
Q5: Can I directly train my model on real detector data?

AI/ML
Yes! But real detector data is oftentimes unlabelled. This means we have to adopt an unsupervised representation learning 
approach, which is quite different from what we have done before.

Raw Data Data Preprocessing

Feature Engineering

Input Data Feature Extraction Representation Task Module Output

Tabular Data Classical Machine Learning Model

Supervised Learning 
In this setup, the task is defined by the label


• With signal(1) vs. background(0) as label we can build a background cut

• With energy as label we can build a energy reconstruction fitter

• With position as label we can build a energy reconstruction fitter

Representation Learning 
In this setup, since there is no label…


• The goal is to learn a good representation that encode important 
informations in our data


• This representation is task-agnostic: generalizable to different tasks

30



Nuclear Physics
Q5: Can I directly train my model on real detector data?

AI/ML
Yes! But real detector data is oftentimes unlabelled. This means we have to adopt an unsupervised representation learning 
approach, which is quite different from what we have done before.

31



① Feature Extractor
Using CNN to convert the image into a feature map

Representation Space

Using fully connected layer to summarize feature map 
into a feature vector

Probability space where the feature vectors live in
Feature vector should contain high-level semantic 
information from feature map if well trained

Hjelm, R. D. et al. Learning deep representations by mutual information estimation 
and maximization. International Conference on Learning Representations (ICLR).

② Mutual Information
A measure of correlation between two probability distributions
In this model, we can calculate the MI between feature map 
and feature vector

③ Contrastive Training

Maximize MI if the input (           ,            ) are the same

Minimize  MI if the input (           ,            ) are different

32



Fig. A→D: the length of the “band” is the time it takes for waveforms to reach maximum
Fig. D vs. Fig E: the width of the “band” represents the number of steps in waveforms
Fig. F: the “ring island” are slow-rounded-top waveforms caused by passivated surface

33



Nuclear Physics
Q6: I built a machine learning model within my collaboration and attempted to use it for my analysis. But my collaborators do not like 
it. They say that you cannot trust the decision of ML model since it’s a black box. What should I do?

AI/ML
• Uncertainty Quantification: bootstrapping methods and uncertainty-aware machine learning models 
•

Model Trial 1

Model Trial 2

Model Trial n

Evaluate result  on 
each model trial and 

quantify 
uncertainties

Training

Training

Training

34



AI/ML
• Uncertainty Quantification: bootstrapping methods and uncertainty-aware machine learning models 
•

Credit: A. Shuetz35



AI/ML
• Uncertainty Quantification: bootstrapping methods and uncertainty-aware machine learning models 
•

Credit: A. Shuetz36



AI/ML
• Uncertainty Quantification: bootstrapping methods and uncertainty-aware machine learning models 
•

Credit: A. Shuetz

Nuclear Physics
Q6: I built a machine learning model within my collaboration and attempted to use it for my analysis. But my collaborators do not like 
it. They say that you cannot trust the decision of ML model since it’s a black box. What should I do?

Other uncertainty-aware machine learning models: 
Bayesian Neural Network, Monte Carlo Dropout, Deep Ensemble, Quantile Regression37



AI/ML
• Uncertainty Quantification: bootstrapping methods and uncertainty-aware machine learning models 
• Interpretability Study: understanding the reason behind how neural network makes decisions

Nuclear Physics
Q6: I built a machine learning model within my collaboration and attempted to use it for my analysis. But my collaborators do not like 
it. They say that you cannot trust the decision of ML model since it’s a black box. What should I do?

Attention Mechanism 
provide interpretability

⃗h1
⃗h2

⃗h3
⃗h4

⃗h5
⃗h22

⃗h23
⃗h24

⃗h25
⃗hlast

Context Image  
(c,θ,ɸ)

a1 ⋅ ⃗h1 a25 ⋅ ⃗h25+ +…+ + =a1 ⋅ ⃗h2 a26 ⋅ ⃗h26

Score Function s( ⃗hi , ⃗hlast )

Softmax Function

s1 s2 s3 s4 s5 s22 s23 s24 s25

a1 a2 a3 a4 a5 a22 a23 a24 a25

D Bahdanau et al.,  
ICLR 2015
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AI/ML
• Uncertainty Quantification: bootstrapping methods and uncertainty-aware machine learning models 
• Interpretability Study: understanding the reason behind how neural network makes decisions

High Attention: Important

Low Attention: Unimportant

𝑒−

𝛾

𝛾 𝛾

𝛾

• Signal are strictly single-vertex events 
• All energy deposited almost immediately

• Most backgrounds are closely-spaced multi-vertex events 
• part of event energy is deposited by cascading γs that slightly alter 

event topology

𝑒−

𝑒−
𝛾

𝛾 𝛾

𝛾
Less than a few 

ns later …

Attention Score on Background Event

39



AI/ML
• Uncertainty Quantification: bootstrapping methods and uncertainty-aware machine learning models 
• Interpretability Study: understanding the reason behind how neural network makes decisions

Saliency Map 
• Gradient-based interpretability technique 

• highlight the parts of an input that are most important for a neural network's prediction 

• Most suitable for CNN

40



AI/ML
• Uncertainty Quantification: bootstrapping methods and uncertainty-aware machine learning models 
• Interpretability Study: understanding the reason behind how neural network makes decisions

Input ⃗x  NN( ⃗x |αT
m, βT

k ) Prediction ̂y

Loss L( ̂y, y)Caclulate Gradient on (αT
m, βT

k )

Forward Pass

Backward Pass
Update Kernel  (αT

m, βT
k )

Training a neural network:

Input ⃗x  NN( ⃗x |αT
m, βT

k ) Prediction ̂y

Prediction ̂yCaclulate Gradient on ⃗x

Forward Pass

Backward Pass
Plot calculated gradient

Compute Saliency Map:

41



AI/ML
• Uncertainty Quantification: bootstrapping methods and uncertainty-aware machine learning models 
• Interpretability Study: understanding the reason behind how neural network makes decisions

Shapley value:   
• Coalitional Game Theory concept 

• Represent each player’s contribution to the total surplus/
deficit assuming they work collaboratively

SHAP interpretor:   
• Black-box interpretor: can interpret ANY trained 

machine learning model 

• Works better on classical ML model with low-
dimensional inputs

Force Plot:   
• For each input event, the SHAP package produces a force plot, 

analogous to free body diagram 

• Shapley value of each feature acts like a force drives the BDT 
decision to either higher (signal-like) or lower (background-like) 

• The value at equilibrium position is then fed to a sigmoid function 
to produce BDT output

Raw Data Data Preprocessing

Feature Engineering

Input Data Feature Extraction Representation Task Module Output

Tabular Data Classical Machine Learning Model
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AI/ML
• Uncertainty Quantification: bootstrapping methods and uncertainty-aware machine learning models 
• Interpretability Study: understanding the reason behind how neural network makes decisions

Phys.Rev.C 107 (2023) 1, 014321 ArXiv: 2207.10710

Learning from the Machine:   
• Select data that are correctly classified by ML model 

but misclassified by traditional method


• Using Shapley value to study the driving factor of ML 
decision

43



Connecting Dots:

An AI Cookbook for Nuclear Physics

Nuclear Physics
Q1: In Lecture 1, we started from raw MAJORANA DEMONSTRATOR waveforms, the lowest level of HPGe detector. Do we always have to 
start from low level data?

• No, we can start from higher level parameters with a procedure called Feature Engineering

AI/ML

Nuclear Physics
Q2: My experiment does not produce short waveforms/time series data like MAJORANA DEMONSTRATOR does, it produces more 
complicated high-dimensional data. what should I use as my feature extraction network?

• The exact model to use depends on how you pre-process your data into the input format

• Convolutional Neural Network (CNN) is a good model for multiple data types in general

• Enhance neural network’s performance by encoding symmetries with Geometric Deep Learning

AI/ML

Nuclear Physics
Q3: Can I use deep learning methods for event simulation?

• Yes! Use Generative Models: Variational Autoencoder (VAE), Generative Adversarial Network (GAN), or Diffusion Model

AI/ML

44



Connecting Dots:

An AI Cookbook for Nuclear Physics

Nuclear Physics
Q4: Now I train a machine learning classifier with with simulated events (either with GEANT4 or generative model). But my simulated 
event looks different from real detector event. What should I do?

• Build a Cycle GAN to perform unpaired translation between simulation and data

• Domain Adaptation between simulated and real detector data

AI/ML

Nuclear Physics
Q5: Can I directly train my model on real detector data?

• Yes! But real detector data is oftentimes unlabelled. This means we have to adopt an unsupervised representation learning 

approach, which is quite different from what we have done before.

AI/ML

Nuclear Physics
Q6: I built a machine learning model within my collaboration and attempted to use it for my analysis. But my collaborators do not like 
it. They say that you cannot trust the decision of ML model since it’s a black box. What should I do?

• Uncertainty Quantification: bootstrapping methods and uncertainty-aware machine learning models 
• Interpretability Study: understanding the reason behind how neural network makes decisions

AI/ML
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Some Useful Links

All lecture materials: Link 

Jupyter Notebook Code: Link

Code

Concept
The Practical Machine Learning 

https://pire.gemadarc.org/education/school21/#ai


2024 Summer Bootcamp on Deep Learning and Applications 
https://ai-bootcamp2024.github.io/


MIT 6.S191 Introduction to Deep Learning 
http://introtodeeplearning.com/


Andrew Ng: Deep Learning Specialization 
Link

My Website: 
https://aobol.github.io/AoboLi/


My Email Addresses: 
aol002@ucsd.edu
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https://drive.google.com/drive/folders/1Y_iMyM0ihi0_h5iRFMoa8HPzkhyc9U-c?usp=share_link
https://drive.google.com/file/d/1PIu6w2m24DLA08qFYfoNIlperd0WHMN7/view?usp=share_link
https://pire.gemadarc.org/education/school21/#ai
https://ai-bootcamp2024.github.io/
http://introtodeeplearning.com/
https://www.coursera.org/specializations/deep-learning?utm_medium=sem&utm_source=gg&utm_campaign=B2C_NAMER_deep-learning_deeplearning-ai_FTCOF_specializations_country-US-country-CA&campaignid=904733485&adgroupid=43839369503&device=c&keyword=andrew%20ng%20deep%20learning&matchtype=b&network=g&devicemodel=&adposition=&creativeid=654942386826&hide_mobile_promo&gad_source=1&gclid=CjwKCAjwnei0BhB-EiwAA2xuBtxLkLy0bjAWEls5WrVKue8ltA-MjlLTwymynKMesl54vTxVwMzUthoCyHAQAvD_BwE

