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Why Do | Want To Give This Lecture

There is a “Gap” between Nuclear Physics and Al/ML

 AI/ML is a huge field with many different research directions

* As physicists, we prefer to approach problem in the physics way, but there is also an “Al/ML way” for the same problem

| ecture 1 sets up the foundation to understand more advanced Al/ML concepts

 [ots of technical details in Lecture 1, but not this lecture

e Main Objective: Connecting dots between Al/ML research directions and NP

* “Not with all details, but | know there is an existing Al/ML methods that could solve my problem”

Nuclear Physics

Questions | received from nuclear physics students

Research directions in Al/ML that could help solving NP challenges
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1. Task Module: Task Layer +
Loss Function

. Cross Entropy

3. Binary Classification 1-3

4. Multiclass Classification

1. Stochastic Gradient Descent

2. Backward Pass: Computational
graph and Backpropagation

3. PyTlorch implementation: one line

Majorana Demonstrator Dataset and HPGe Detector
PyTorch Dataset Class

Data pre-processing: transform your data

Wrap dataset object to create a data loader
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1. Data Preprocessing 2. Feature Extraction 3a. Classification 4. Training 5. Evaluation

A e A

3b. Regression

Model Building
1. Neural Network: linear layer and o N
activation function | MSE Loss, L1 Loss, and Smooth L1 1. Overfitting vs. Underfitting _ .
2. How to create a simple NN in PyTorch L 0SS 2. Evaluate binary classication: ROC Analysis
3. Forward pass 3. Evaluate regression: reconstruction algorithm
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ARTIFICIAL INTELLIGENCE ————————————————————  Physics

Nuclear Physics

Neutrinoless Double-
Beta Decay




Nuclear Physics

Q1: In Lecture 1, we started from raw MAJORANA DEMONSTRATOR waveforms, the lowest level of HPGe detector. Do we always have
to start from low level data?

No, we can start from higher level parameters with a procedure called

Data Preprocessing Feature Extraction
‘ > Feature Engineering > Classical Machine Learning Model T

Task Module
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Data Preprocessing

Feature Engineering

Feature Extraction
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Task Module

Classical Machine Learning Model T

Tabular Data

* Usually has much lower dimension than raw
data

* Obtained through Feature Engineering process

» Extracting useful/representative informations
into a few quantitative parameters

* Prior knowledge can be incorporated during
this process

* This means our understanding of Nuclear
Physics can be incorporated



Data Preprocessing

‘ Feature Engineering

Feature Extraction

Task Module

Classical Machine Learning Model

Deep Neural Networks can be used to analyze Tabular Data, but it’s usually not the best model...

 DNN is particularly powerful for high dimensional data, but Tabular data is usually low dimensional

 DNN lacks some very useful features some other models have

Support Vector Machine (SVM)

 Draw a hyperplane between two clusters of tabular data

 Maximize the margin between hyperplane and the
support vector (closest data point to the hyperplane)
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Advantages of SVM

Very clear and analytical Decision Boundary between
signal and background

Unlike DNN which is data-hungry, SVM is robust with
small amount of training data

Kernel method could transform the data into a space
where they are linearly separable




Raw Data Data Preprocessing Input Data Feature Extraction

Representation Task Module

Feature Engineering

Tabular Data

Classical Machine Learning Model

Deep Neural Networks can be used to analyze Tabular Data, but it’s usually not the best model...

 DNN is particularly powerful for high dimensional data, but Tabular data is usually low dimensional

 DNN lacks some very useful features some other models have

Boosted Decision Tree (BDT) Outlook
 Decision Tree: Make decision by asking a series of binary questions /\ o
Suniny Overcast ain
* Boosting Algorithms: iteratively grow many weak classifier and \
aggregate them to create a strong classifier Humidity Yes Wind
090¢ @ o O /\ /\
cses o8 e 3. pl vl
. W . 18 Norma frong ea
Ocee ® o0 / \ / \
Original Data Weighted data Weighted data No Yes No Yes
Ensemble
@ Classifer Advantages of BDT

v/
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Ensemble Learning: BDT and other ensemble learning
methods usually achieves the best performance in
Kaggle challenges

Naturally come with some level of interpretability




Raw Data Data Preprocessing Input Data Feature Extraction Representation Task Module

Feature Engineering Tabular Data Classical Machine Learning Model

Deep Neural Networks can be used to analyze Tabular Data, but it’s usually not the best model...

 DNN is particularly powerful for high dimensional data, but Tabular data is usually low dimensional

 DNN lacks some very useful features some other models have

Outlook

. Make decision by asking a series of binary questions o ]\\
Suniy Overcast Rain
. iteratively grow many weak classifier and /’ ‘\\
aggregate them to create a strong classifier Humidity Vos Wind
/\ /\
, \ / \
High Normal Strong Weak
Whird . | / \ / \
OfizinghEss weighfhe'Disadvantage'of'BDTand SVM is exactly the advantage of neural networks .\ Yes

« BDT & SVM is very slow on high-dimensional data (i.e. raw detector output)

« BDT & SVM is less customizable than deep neural networks

« BDT & SVM cannot achieve more complicated tasks like data generation:l) | and other ensemble learming
methods usually achieves the best performance In

Kaggle challenges
* Naturally come with some level of interpretability



Nuclear Physics

Q2: My experiment does not produce short waveforms/time series data like MAJORANA DEMONSTRATOR does, it produces more
complicated high-dimensional data. what should | use as my feature extraction network?

The exact model to use depends on how you pre-process your data into the input format

Data Preprocessing Feature Extraction Task Module

‘ Feature Engineering 4 Classical Machine Learning Model T
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Data Preprocessing ( Feature Extraction Task Module

‘ g Feature Engineering
Triggered PMT

’

3. Spatiotemporal Data (2D Movie)

t

—
- e A 1 7 ’ s Ve /’
/// ,L/ I l//,/l./ J//, | I :LI/J,.'/ 1/ i /[//"
,.'/ //, e ,// / ,/ | ,// 7 // f/’
e ]
TER
/4
J 4 4 A J i
/ 1 4 4 Y
v ” A S/
° = & g g
d

1. Time Series 4. Point Cloud Data

0.08 T
—— KamNet Event Window
1 . e
0.071 ¢ e®
TR T
..ﬂ' oto @ © :‘ %
0.06 o a o " o’
v 0.5 }i‘ o % s %o ,: o.’.' ’g
> o l’l a : @ , - r 4
£ 0.05/ o ® " 20 0 %
CE;_ a : a8 - e® -
< _ . o Sop o0 ®a 8 » ° - e §
8 0.04 S L .“ = ® * o
@ o
s b * a gt o .‘- o5 ou‘
£ 0.03] o o a 8 2
£ 0. o ] |2 il * = s
(e] 4] ) a a
= "'v'-:.-'ﬁ""i
0.021 ‘o.’ = =il iy .g
| ~.. .‘ .: .‘.".‘
0.011 - -4 ® b 1
T 0.5 0.5
. e v o 0 ’
0.00 —26 -10 0 10 20 30 40 _065 0.5

Proper Hit Time [ns] A
11 ?

11




- Task Module

w Data Preprocessing > Feature Extraction >

‘ > Feature Engineering > > Classical Machine Learning Model

* The exact model to use depends on how you pre-process your data into the input format.
Is a good model for multiple data types in general.

Invariance Equivariance
f(pg(x)) = f(x) fpg(x)) = pg (f(x))
X
Jo,
f
f
Y f(x)
12
12



Data Preprocessing > Feature Extraction
‘ > Feature Engineering

Task Module
Classical Machine Learning Model T

* The exact model to use depends on how you pre-process your data into the input format.
IS a good model for multiple data types in general.

Fully Connected Neural Network (last lecture) ...... ......
* Fully-connected neural networks are not transliation invariant ...... ......
e e
R Bl
NS B
AR SRR

* Also has a huge parameter space:
2 million parameters for 1920x1080 image

tfully-connected

13
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w Data Preprocessing -> - Task Module
‘ > Feature Engineering > > Classical Machine Learning Model I

* The exact model to use depends on how you pre-process your data into the input format.
IS a good model for multiple data types in general.

Convolution

* The only linear and translation-equivariant operations
e Scan n filters throughout the 2D images
* nis the channel of CNN

Filter weights:
0 1 2

2 2 0
0 1 2

14

14



Data Preprocessing Feature Extraction Task Module

‘ > Feature Engineering Classical Machine Learning Model T

* The exact model to use depends on how you pre-process your data into the input format.
IS a good model for multiple data types in general.

inputs can be
restricted to regions

locality

nearby areas tend
to contain stronger
patterns

same filters can be applied

. th hout the | t
translation roughout the inpu

invariance

relative positions
are relevant

15
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Data Preprocessing Feature Extraction

Task Module

‘ > Feature Engineering > Classical Machine Learning Model T

* The exact model to use depends on how you pre-process your data into the input format.
IS a good model for multiple data types in general.

Convolution Deconvolution

Feature map smaller than Input Image Feature map larger than input image

5 X 5 input

3 X 3 filter

2 X 2 stride

No zero padding

= ) X 2 output

5 X 3 input
3 X 3 filter

1 X 1 stride

e “Full” zero
padding

= 7/ X/ output



Data Preprocessing Feature Extraction
‘ > Feature Engineering > Classical Machine Learning Model T

Task Module

* The exact model to use depends on how you pre-process your data into the input format

IS a good model for multiple data types in general

1. Time Series 3. Spatiotemporal Data

t

A A
s r’1 r‘;l 4 r} } | rj/rj rJ H 1
CNN is a general-purpose model

e [0 Adaptability: can serve as the feature extractor for 1D, 2D, 3D, or even 4D data
* For 4D, using 3D CNN + channel as additional dimension

Normalized Amplitude

* Baseline Model: when starting your own machine learning project, it’s always good to first build 5e CNN

a CNN on your data to produce a baseline classification/regression result twork are better options
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Raw Data Data Preprocessing Input Data Feature Extraction Representation Task Module

> Feature Engineering Tabular Data Classical Machine Learning Model

 The exact model to use depends on how you pre-process your data into the input format

o Lonvolutional Neural etwork (L] s a good model for multiple data types in general
* Enhance neural network’s performance by encoding symmetries with Ccomeatric Decp Learmning

ConvLSTM LSTM
Convolutional Long-Short Term Memory (LSTM) Network LSTM (without Convolution) is efficient against time series data for similar reasons
t
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Data Preprocessing -> Task Module
‘ > Feature Engineering > Classical Machine Learning Model T

 The exact model to use depends on how you pre-process your data into the input format
Is a good model for multiple data types in general
* Enhance neural network’s performance by encoding symmetries with

Spherical CNN

SO(3) symmetry & rotational invariance
Similar model exists for cylindrical detectors or other geometries

Cohen, Taco et al. “Spherical
CNNs.” ICLR 2018

19



w Data Preprocessing > Feature Extraction > Task Module

‘ > Feature Engineering > Classical Machine Learning Model T

 The exact model to use depends on how you pre-process your data into the input format
Is a good model for multiple data types in general

* Enhance neural network’s performance by encoding symmetries with

Perfect Detector Realistic KamLAND-Zen Hardware A. Lietal.
DOI: 10.1016/j.nima.2019.162604

100% PC, 100% QE 20% PC, 100% QE 100% PC, 23% QE 20% PC, 23% QE

0 0
12 10
20 20
== =
K4 30
42 10
10 1% 27 a o n 14 0 0 1 10 1
A e 5

better detector, more information in datazz

Computer simulation for neutrinoless double beta decay signal
and background events

Wrote PMT model that allows us to vary two Information
Parameters:

e Photocoverage (PC)
e Quantum Efficiency (QE)

Benchmark model performance

under different input conditions




Raw Data Data Preprocessing Input Data Feature Extraction Representation Task Module

> Feature Engineering Tabular Data Classical Machine Learning Model

 The exact model to use depends on how you pre-process your data into the input format
o Lonvolutional Neural etwork (L] s a good model for multiple data types in general
* Enhance neural network’s performance by encoding symmetries with Ccomeatric Decp Learmning

2D CNN Information Parameter Map KamNet Information Parameter Map 1 000

42.0 42.0

39.5 39.5 0.920.
g 37.0 g 37.0;
%, 34.5 % 34.5] 0.840 A. Liet al,
% 32.0 % 32.0 Phys. Rev. C 107,
3 29.5 3 29.5 0.760 014323 (2023)
£ 27.0 £ 27.0

24.5 24.5 0.680

22.0 22.0

23.0 29.6 36.2 42.8 494 56.0 23.0 29.6 36.2 42.8 494 56.0
QE [%] QE [%]
More Robust Better Performance
Smoother transition from low to high information parameters 21 Across entire map, 61% — /4% background rejection

Every bit of additional information is absorbed by KamNet 21 at KamLAND-Zen hardware configuration



Nuclear Physics

Q3: Can | use deep learning methods for event simulation?

Yes! Use

Convolutional Autoencoder

Concatenating two CNNs back-to-back

Input image Reconstructed image

* Encoder: convolution layers

& . Latent Space 4
| Representation

’ﬁi

* Decoder: deconvolution layers

-
—
v o

Train by minimizing MISE loss between input image
and reconstructed image

Each image is encoded into the representation, and
can be reconstructed from the representation by the
decoder

Convolutional Autoencoder is NOT a generative model

because we cannot sample from the represnetation ( Decoder Network

Data Preprocessing Feature Extraction Task Module
‘ > Feature Engineering Classical Machine Learning Model I

22




Nuclear Physics

Q3: Can | use deep learning methods for event simulation?

Yes! Use , , Or

Variational Autoencoder

Dy (N : N(x]0,1)) = =1 +o624+u?—0.5 | . .
k(A el o) [ A x]01) 08(01) + o + 4 * |In Convolutional Autoencoder, the representation contains
all information needed to reconstruct an image

* But the representation does not follow any particular

Reconstructed image

Input image : : :
distribution

- * This means we cannot sample from it to generate new

Latent Space . events

Representation
* Variational Autoencoder add another loss to regulate the
latent space vector

KL Divergence: measuring the distance between two
probability distributions

e Additional loss term that regulates the representation to
follow a Gaussian with 0 mean and 1 standard deviation

MSE Loss

23



Nuclear Physics

Q3: Can | use deep learning methods for event simulation?

Yes! Use

Training set

Random
noise
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, OF

Generative Adversarial Networks

A Decoder/Generator will generate a fake data from
sampled random noise

A Encoder/Discriminator will classify whether the input
iImage is real or fake

Adversarial Training: generator and discriminator fight
each other during training

» E(log(D(x)) + E(1 — D(G(z)))

m_' Real/Fake Classification



Nuclear Physics

Q4: Now | train a machine learning classifier with with simulated events (either with GEANT4 or generative model). But my simulated
event looks different from real detector event. What should | do?

* Build a to perform between simulation and data

Think of simulated events and real events as two different languages ...

e Simulation tuning: building a model that translate simulated events to real detector events

 |deally, we will train our translation model between paired events, but those pairs are difficult to obtain

Paired Data Unpaired Data

Cat A
Dog [ 5 DOg - 3
Cow - ]

Cow

25



* Build a

Dog

Cow

to perform

Cat

EN—CN Translation Network

between simulation and data

Autoencoder style

OO

OO

OZ30

=@
O
CQ0
O
'S
O

CN-EN Translation Network

O
O

QOO

QOOOO

O

O ®
OO
O )
O

QOOOO

elolelele

Autoencoder style

26

¥

\ Discriminator Network
Does “|” look like a

chinese word?




* Build a to perform between simulation and data

Detector Pulse
—— Simulated Pulse
—— ATN Output
Preamp Integration
RC Discharge

ADC Counts [a.u.]

Time Sample [ns] 1000-
. [ 1 Detector Pulse B — >imulated Pulse
()
-§ 3000 ATN Output Pulse — Detector Pulse
E;_ 1 Simulated Pulse 3 800 L AT Output Fuise
m
< 25001 P
= o
e , S 6001
5 A0 A. Li, J.Gruszko, et al. 2
— _ P
S 1500- NeurlPS 22 ML4PS Workshop T a00 L
L LV
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£ 1000 i = .
o # 200-
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Nuclear Physics

Q4: Now | train a machine learning classifier with with simulated data (either with GEANT4 or generative model). But my simulated
data looks different from real detector data. What should | do?

* Build a to perform between simulation and data
between simulated and real detector data

Same Source and Target

Marginal Distributions on X Tra n Sfe r Lea n i n g

YES NO Source Domain: the domain from which the initial training data
IS drawn.

e Data are typically labelled

Same Tasks on Source
and Target Domains

Same Tasks on Source
and Target Domains

« Simulated data in context of NP

YES Target Domain: the domain to which the model needs to be
e = Y = - - = - - - - - - -~ adapted.
I
Usual® | Inductive fransductive Unsupervised | ¢  Data are typically unlabelled and looks different from the
Learning Setting 1| Transfer Learning Transfer Learning Transfer Learning | _
. e ' source domain
. Z Transfer Learning' _
e ... .. = ' * Real detector data in context of NP
( Domain Hdaptation) Task: classification or regression or other tasks

Data Preprocessing > Feature Extraction Task Module
‘ > Feature Engineering > Classical Machine Learning Model I




Nuclear Physics

Q4: Now | train a machine learning classifier with with simulated data (either with GEANT4 or generative model). But my simulated
data looks different from real detector data. What should | do?

* Build a to perform

between simulation and data

between simulated and real detector data

\4

Feature Extraction

A

29

Task Module >

Classification/Regression Loss

> Encoder mmme Real/Fake Classification

Adversarial Loss

Ganin, Y., & Lempitsky, V. (2015).
Unsupervised domain adaptation
by backpropagation




Nuclear Physics

Q5: Can | directly train my model on real detector data?

Yes! But real detector data is oftentimes unlabelled. This means we have to adopt an unsupervised
approach, which is quite different from what we have done before.

Supervised Learning

Task A Task B Task C

In this setup, the task is defined by the label output

e With signal(1) vs. background(0) as label we can build a background cut

* With energy as label we can build a energy reconstruction fitter

* With position as label we can build a energy reconstruction fitter shared

Representation Learning subsets of
factors

In this setup, since there is no label...

* The goal is to learn a good representation that encode important
informations in our data

input

* This representation is task-agnostic: generalizable to different tasks

aa Feature Extraction

Data Preprocessing Task Module ]

‘ Feature Englneenng > Classical Machine Learning Model

30




Nuclear Physics

Q5: Can | directly train my model on real detector data?

Yes! But real detector data is oftentimes unlabelled. This means we have to adopt an unsupervised
approach, which is quite different from what we have done before.

L3404z D S

wWSHINGETON, D.C.

Left: Drawing of a dollar bill from memory. Right: Drawing subsequently made
with a dollar bill present. Image source: Epstein, 2016

Learning to generate pixel-level details is often unnecessary; learn
high-level semantic features with pretext tasks instead

Source: Anand, 2020

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 13 - 10 May 18, 2023



Hjelm, R. D. et al. Learning deep representations by mutual information estimation
and maximization. International Conference on Learning Representations (ICLR).

Using CNN to convert the image into a feature map

Using fully connected layer to summarize feature map
into a feature vector

Input image MxM Feature
feature map vector
i i
e ;
ia

Representation Space
Probability space where the feature vectors live in

Feature vector should contain high-level semantic
information from feature map if well trained

32

(2) Mutual Information
A measure of correlation between two probability distributions

In this model, we can calculate the Ml between feature map
and feature vector

M x M feature map (see Figure 1)

\ Score
\ ‘
- ‘Real”
\*\
M >
N
[ 5= \\ Feature vector
. \\\\\
M \ \
|y Discriminator
“Fake”
................. > .

(3 Contrastive Training

Maximize MI if the input (" , (" are the same
Ximiz | |pu( ",‘

% ) are different




ADC Counts

Fig. A—D: the length of the “band” is the time it takes for waveforms to reach maximum
Fig. D vs. Fig E: the width of the “band” represents the number of steps in waveforms

Fig. F: the “ring island” are slow-rounded-top waveforms caused by passivated surface
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Nuclear Physics

Q6: | built a machine learning model within my collaboration and attempted to use it for my analysis. But my collaborators do not like
it. They say that you cannot trust the decision of ML model since it’s a black box. What should | do?

training sample

990000
090000

— 900000

00000

00000
00000

— 00000

00000

00000
00000

— 00000

bootstrap samples

methods and

machine learning models

O
O

O

f/ v -

Evaluate result on 17

each model trial and |+
quantify

uncertainties

MakisbeindlV)

o

o




methods and machine learning models

predict the value of y» for a new value of x, where f: {x, }"* = {y,}" maps the input space to the
output space

Let’s start with a distribution of all
possible functions that, could have
produced our data (without actually 0-

looking at the datal).

JC) ~p(f(-)) ~ H(u(.),0(.))

A Gaussian process is a probability distribution over possible functions that fit a set of points.

35 Credit: A. Shuetz



@ AI/ML

* Uncertainty Quantification: bootstrapping methods and uncertainty-aware machine learning models

A gaussian process needs two
Ingredients:

J(x) ~ GP(m(x), k(x, x))

« a mean function

m(x) = E[f(x)]

(mean at any point of the input
space)

* a covariance function (kernel)

k(x, x') = E[(f(x) — m))(f(x) — m(x"))"]

(how likely it is the functions are : . , . : . .
simila r) -6 -4 -2 0 2 - 6
36 Credit: A. Shuetz




Nuclear Physics

Q6: | built a machine learning model within my collaboration and attempted to use it for my analysis. But my collaborators do not like
it. They say that you cannot trust the decision of ML model since it’s a black box. What should | do?

methods and machine learning models

GP prior GP posterior

Sampling from
the GP prior after
10 noise free
observations 1

Other uncertainty-aware machine learning models:

Bayesian Neural Network, Monte Carlo Dropout, Deep Ensemble, Quantile Regression Credit: A. Shuetz



Nuclear Physics

Q6: | built a machine learning model within my collaboration and attempted to use it for my analysis. But my collaborators do not like
it. They say that you cannot trust the decision of ML model since it’s a black box. What should | do?

methods and

machine learning models

understanding the reason behind how neural network makes decisions

ConvLSTM

Convolutional Long-Short Term Memory (LSTM) Network

X. Shi et al,,

NeurlPS 28 (2015)
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Attention Mechanism
orovide interpretability
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@ AI/ML

* Uncertainty Quantification: bootstrapping methods and uncertainty-aware machine learning models
© Interpretabiity Study: understanding the reason behind how neural network makes decisions

. -
. S
\e 0.14/| Attention Score on Background Event e
0.12 s
. A=)
g L
2 0.10
. . : a
» Signal are strictly single-vertexevents g =
» All energy deposited almost immediately 7§
© 0.06
£
— O
€ Less than a few y %\y < 0.04: .5
ns later ... % ‘;&;
g : % ’ ﬁ 0.02 E
\% E
0.00——5, -10 | 0 .10 .20
Hit Time [ns]

- Most backgrounds are closely-spaced multi-vertex events

. part of event energy is deposited by cascading ys that slightly alter
event topology High Attention: Important
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Low Attention: Unimportant



methods and machine learning models
understanding the reason behind how neural network makes decisions

Saliency Map

e Gradient-based interpretability technique

e highlight the parts of an input that are most important for a neural network's prediction
e Most suitable for CNN




methods and machine learning models
understanding the reason behind how neural network makes decisions

Training a neural network:

N Forward Pass - "

Loss L(V, y)

Backward Pass

Update Kernel (a,,, 3, ) Caclulate Gradient on (a,, 3, )

Compute Saliency Map:

N Forward Pass - "

Prediction y

Backward Pass

Plot calculated gradient Caclulate Gradient on X
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methods and machine learning models
understanding the reason behind how neural network makes decisions

w Data Preprocessing Feature Extraction > Task Module
‘ > Feature Engineering > Classical Machine Learning Model T

SHAP intel‘pl‘etor: Shapley value:

* Black-box interpretor: can interpret ANY trained
machine learning model

* Coalitional Game Theory concept

 Represent each player’s contribution to the total surplus/

* Works better on classical ML model with low- deficit assuming they work collaboratively

dimensional inputs

l

T o SUANT = 1S = D! o g
!illi Shop ZOENDS Iy I DORIC))

SCN\{i}

higher & lower Force Plot:

(_
f(x) base value

* For each input event, the SHAP package produces a force plot,
2986 =2.46 -1.986 -0.9861 0.01385 1.014

analogous to free body diagram

’ | | |  Shapley value of each feature acts like a force drives the BDT

noise avse der ' channel decision to either higher (signal-like) or lower (background-like)

-4;I'he value at equilibrium position is then fed to a sigmoid function
to produce BDT output
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Phys.Rev.C 107 (2023) 1, 014321 ArXiv: 220710710

Learning from the Machine:

4 -
* Select data that are correctly classified by ML model o . =
but misclassified by traditional method 5 AL ’
* Using Shapley value to study the driving factor of ML s
decision 0 - N O
S
n+ electrode O o y
2 & —2 @ ..
5 . 2
o + ’ o
< —4- 0
I [
V)
—6 - —4
_8 -
-6
passivation layer «— P T contact , , , , , , ,
— 2500 2750 3000 3250 3500 3750 4000
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Connecting Dots:
An Al Cookbook for Nuclear Physics

Nuclear Physics

Q1: In Lecture 1, we started from raw MAJORANA DEMONSTRATOR waveforms, the lowest level of HPGe detector. Do we always have to
start from low level data?

* No, we can start from higher level parameters with a procedure called

Nuclear Physics

Q2: My experiment does not produce short waveforms/time series data like MAJORANA DEMONSTRATOR does, it produces more
complicated high-dimensional data. what should | use as my feature extraction network?

 The exact model to use depends on how you pre-process your data into the input format
IS a good model for multiple data types in general
* Enhance neural network’s performance by encoding symmetries with

Nuclear Physics

Q3: Can | use deep learning methods for event simulation?
 Yes! Use , , Or
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Connecting Dots:
An Al Cookbook for Nuclear Physics

Nuclear Physics

Q4: Now | train a machine learning classifier with with simulated events (either with GEANT4 or generative model). But my simulated
event looks different from real detector event. What should | do?

* Build a to perform between simulation and data
between simulated and real detector data

Nuclear Physics

Q5: Can | directly train my model on real detector data?

* Yes! But real detector data is oftentimes unlabelled. This means we have to adopt an unsupervised
approach, which is quite different from what we have done before.

Nuclear Physics

QG6: | built a machine learning model within my collaboration and attempted to use it for my analysis. But my collaborators do not like
it. They say that you cannot trust the decision of ML model since it’s a black box. What should | do?

methods and machine learning models

understanding the reason behind how neural network makes decisions
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Some Useful Links

All lecture materials: Link
Jupyter Notebook Code: Link

O Concept

The Practical Machine Learning
https://pire.gemadarc.org/education/school21/#ai

2024 Summer Bootcamp on Deep Learning and Applications
https://ai-bootcamp2024.github.io/

MIT 6.S191 Introduction to Deep Learning | -

http://introtodeeplearning.com/ My Website:
https://aobol.github.io/AocbolL.i/

Andrew Ng: Deep Learning Specialization

Link My Email Addresses:
aol002@ucsd.edu
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https://drive.google.com/drive/folders/1Y_iMyM0ihi0_h5iRFMoa8HPzkhyc9U-c?usp=share_link
https://drive.google.com/file/d/1PIu6w2m24DLA08qFYfoNIlperd0WHMN7/view?usp=share_link
https://pire.gemadarc.org/education/school21/#ai
https://ai-bootcamp2024.github.io/
http://introtodeeplearning.com/
https://www.coursera.org/specializations/deep-learning?utm_medium=sem&utm_source=gg&utm_campaign=B2C_NAMER_deep-learning_deeplearning-ai_FTCOF_specializations_country-US-country-CA&campaignid=904733485&adgroupid=43839369503&device=c&keyword=andrew%20ng%20deep%20learning&matchtype=b&network=g&devicemodel=&adposition=&creativeid=654942386826&hide_mobile_promo&gad_source=1&gclid=CjwKCAjwnei0BhB-EiwAA2xuBtxLkLy0bjAWEls5WrVKue8ltA-MjlLTwymynKMesl54vTxVwMzUthoCyHAQAvD_BwE

