

Effective Field Theories for Physics Beyond the Standard Model. Backup Material

Emanuele Mereghetti

Nuclear Physics Summer School

July 24-26, 2023

Some backup material

More details on χ PT power counting

 $\chi {\rm PT}$ in the two-nucleon sector: chiral EFT

Examples of power counting of two-body currents

The CPV potential

More details on χ PT power counting in the 1- and 2-nucleon sectors

The 1-nucleon sector: (Heavy) Baryon Chiral Perturbation Theory

- 1. degrees of freedom: pions (Goldstone bosons) and nucleons
- 2. symmetries: global $SU(2)_L \times SU(2)_R \rightarrow SU(2)_V$
- 4. power counting: chiral symmetry & spontaneous breaking allow for an expansion in Q/Λ_{χ}

 $Q \in \{p, m_{\pi}\}, \qquad \Lambda_{\chi} \sim 4\pi F_{\pi} \sim m_N$

3. interactions: realize the symmetry non-linearly, encode the pions into a matrix & build "chiral covariant" objects

S. Weinberg, '79

- can be applied only to low-energy processes, $Q \ll 1$ GeV!
- to have consistent power counting, is convenient to use non-relativistic formulation

E. Jenkins and A. Manohar, '90

• but HB χ PT is not a unique choice

infrared regularization T. Becher and H. Leutwyler, '99, extended on-mass-shell scheme T. Fuchs, J. Gegelia, G. Japaridze, S. Scherer, '03

The 1-nucleon sector: (Heavy) Baryon Chiral Perturbation Theory

• e.g. at lowest order in π -N sector, there are only 2 chiral-invariant interactions

$$\mathcal{L} = N^{\dagger} i D_0 N + g_A N^{\dagger} \vec{\sigma} \cdot \vec{u} N = N^{\dagger} \left\{ i \partial_0 - \frac{1}{4F_{\pi}^2} (\pi imes \partial_0 \pi) \cdot \boldsymbol{\tau} - \frac{g_A}{2F_{\pi}} \vec{\sigma} \cdot \vec{\nabla} \boldsymbol{\tau} \cdot \boldsymbol{\pi}
ight\} N + \dots$$

- chiral invariance constrains pion-nucleon interactions to be prop. to the pion momentum \checkmark
- chiral invariance constrains the coefficient of the 2-pion nucleon LO coupling \checkmark
- the 1-pion-nucleon coupling is chiral invariant by itself

 \implies comes with an independent "**low-energy constant**" (LEC) g_A , $g_A = \mathcal{O}(1)$

The 1-nucleon sector: (Heavy) Baryon Chiral Perturbation Theory

• e.g. at lowest order in π -N sector, there are only 2 chiral-invariant interactions

$$\mathcal{L} = N^{\dagger} i D_0 N + g_A N^{\dagger} \vec{\sigma} \cdot \vec{u} N = N^{\dagger} \left\{ i \partial_0 - \frac{1}{4F_{\pi}^2} (\pi imes \partial_0 \pi) \cdot \boldsymbol{\tau} - \frac{g_A}{2F_{\pi}} \vec{\sigma} \cdot \vec{\nabla} \boldsymbol{\tau} \cdot \boldsymbol{\pi}
ight\} N + \dots$$

- chiral invariance constrains pion-nucleon interactions to be prop. to the pion momentum \checkmark
- chiral invariance constrains the coefficient of the 2-pion nucleon LO coupling \checkmark
- the 1-pion-nucleon coupling is chiral invariant by itself

 \implies comes with an independent "**low-energy constant**" (LEC) g_A , $g_A = \mathcal{O}(1)$

- g_A depends on the dynamics of the high-energy theory
- · cannot be predicted purely from low-energy
- g_A can be computed in Lattice QCD and/or extracted from experiment

Power counting example: corrections to the pion-nucleon coupling

leading order contribution: 1 derivative, tree-level

• at NLO: 1 derivative, tree level

fixed by Lorentz invariance (reparameterization invariance)

Example: corrections to the pion-nucleon coupling

• at N²LO: 2 derivatives or 1 loop

- $Q^4/(4\pi)^2$ for each loop
- Q/F_{π} for each pion-N vertex
- Q^{-2} for each pion and Q^{-1} for each nucleon propagator

In single nucleon sector

- observables have an expansion in Q/Λ_{χ}
- can be evaluated in perturbation theory

Two nucleon sector.

- for on-shell nucleons $E_{1,2} = 0$, $E'_{1,2} = 0$, $q^0 = 0$
- the tree level amplitude for NN scattering is

$$i\mathcal{A}^{(0)} = i\frac{g_{A}^{2}}{4F_{\pi}^{2}} \left[\vec{\sigma}^{(1)} \cdot \vec{q} \, \vec{\sigma}^{(2)} \cdot \vec{q}\right] \left[\tau^{(1)} \cdot \tau^{(2)}\right] \frac{1}{\vec{q}^{2} + m_{\pi}^{2}} - i\left(C_{S} - C_{T}\vec{\sigma}^{(1)} \cdot \vec{\sigma}^{(2)}\right)$$

+ exchange diagram

• $\mathcal{A}^{(0)}$ scales as $1/F_{\pi}^2$

Two nucleon sector.

Diagram 1 Can we power count it?

Two nucleon sector.

Diagram 1 Can we power count it?

$$\frac{Q^4}{(4\pi)^2} \times \left(\frac{Q}{F_{\pi}}\right)^4 \times \left(\frac{1}{Q^2}\right)^2 \times \left(\frac{1}{Q}\right)^2 = \frac{1}{F_{\pi}^2} \times \frac{Q^2}{\left(4\pi F_{\pi}\right)^2}$$

- suppressed by 2 powers in the χ PT power counting
- explicit evaluation of Diagram 1 yields a result of the correct size
- Diagram 2, however, leads us into troubles...

Two nucleon sector. One loop corrections

Diagram 2

$$\begin{split} i\mathcal{A}_{2}^{(1)} &= \frac{g_{A}^{4}}{F_{\pi}^{4}} \int \frac{d^{d}k}{(2\pi)^{d}} \left[S^{(1)} \cdot (k+q) S^{(1)} \cdot k \right] \left[S^{(2)} \cdot (k+q) S^{(2)} \cdot k \right] \left[\tau^{(1)a} \tau^{(1)b} \right] \left[\tau^{(2)a} \tau^{(2)b} \right] \\ &\times \frac{1}{v \cdot k + i\varepsilon} \frac{1}{-v \cdot k + i\varepsilon} \frac{1}{k^{2} - m_{\pi}^{2} + i\varepsilon} \frac{1}{(k+q)^{2} - m_{\pi}^{2} + i\varepsilon} \end{split}$$

• no way to avoid the pole at $v \cdot k = 0$

$$\mathbf{v} \cdot \mathbf{k} = \mp i\varepsilon, \qquad \mathbf{v} \cdot \mathbf{k} = \pm \left(\sqrt{\vec{k}^2 + m_\pi^2} - i\varepsilon\right), \qquad \mathbf{v} \cdot \mathbf{k} = \pm \left(\sqrt{(\vec{k} + \vec{q})^2 + m_\pi^2} - i\varepsilon\right)$$

diagram does not make sense...

Two-nucleon sector

• for $A \ge 1$, we can pions with both "soft" momentum modes

 $(k^0, \vec{k}) \sim (Q, Q)$

and "potential" modes

$$\left(k^{0},\vec{k}
ight)\sim\left(rac{Q^{2}}{2m_{N}},Q
ight)$$

- Weinberg's power counting formula only applies to soft modes
- for the potential scaling, we need use non-relativistic propagators $E \sim p^2/m_N$ and change the power counting accordingly

Infrared enhancement

• we can power count the pion-exchange series as

$$i\mathcal{A}^{(2)} = \frac{g_A^2}{F_\pi^2} \left(\frac{Q^5}{4\pi m_N}\right)^L \left(\frac{g_A^2}{F_\pi^2}\right)^L \left(\frac{m_N}{Q^2}\right)^{2L} = \frac{g_A^2}{F_\pi^2} \left(\frac{g_A^2 Q m_N}{4\pi F_\pi^2}\right)^L = \frac{g_A^2}{F_\pi^2} \times [\mathcal{O}(1)]^L$$

· for the contact series

$$i\mathcal{A}^{(2)} = C\left(\frac{Q^5}{4\pi m_N}\right)^L (C)^L \left(\frac{m_N}{Q^2}\right)^{2L} = C \times \left(\frac{m_N Q}{4\pi}C\right)^L = C \times [\mathcal{O}(1)]^L$$

• the Lth loop is not suppressed

the full series needs to be resummed!

Weinberg's recipe

S. Weinberg '90, S. Weinberg '91

- 1. identify "irreducible diagrams"
- do not have a purely A-nucleon intermediate state
- internal nucleon energies $E_N \sim Q \sim m_\pi$
- 2. the potential V is the sum of irreducible diagrams
- can be calculated perturbatively in a power expansion in Q/Λ_{χ} following χPT counting rules

Weinberg's recipe

S. Weinberg '90, S. Weinberg '91

- 1. identify "irreducible diagrams"
- do not have a purely A-nucleon intermediate state
- internal nucleon energies $E_N \sim Q \sim m_\pi$
- 2. the potential V is the sum of irreducible diagrams
- can be calculated perturbatively in a power expansion in Q/Λ_χ following χPT counting rules
- 3. calculate the full amplitude by "stitching" together irreducible diagrams with *A*-nucleon Green's functions
- equivalent to solving the Schroedinger or Lippmann-Schwinger equation with *V* LA-UR-24-27605

Weinberg's recipe

 steps 1 and 2 are equivalent to integrating out "soft" and "potential" modes and matching onto a theory with nucleons interacting via instantaneous potentials (chiral EFT)

> happens in several other EFTs with > 1 heavy particles: NRQCD, NRQED similar ideas also in Soft Collinear Effective Theory

the same recipe can be applied to operators that mediate BSM processes

 \implies calculate matrix elements of BSM operators between nuclear wavefunctions

• the scaling of short-range operators **assumes** Weinberg's ν (naive dimensional analysis) LA-UR-24-27605

Power counting for three nucleon interactions

• diagram 0

$$\propto \left(rac{Q^5}{4\pi m_N}
ight)^2 \left(rac{m_N}{Q^2}
ight)^3 \sim rac{Q^4 m_N}{(4\pi)^2}$$

• diagram 1

$$\propto \left(\frac{Q^5}{4\pi m_N}\right)^2 \left(\frac{m_N}{Q^2}\right)^3 \times \left(\frac{Q^5}{4\pi m_N}\right) \left(\frac{m_N}{Q^2}\right)^2 \left(\frac{g_A Q}{F_\pi}\right)^2 \frac{1}{Q^2} \sim \frac{Q^4 m_N}{(4\pi)^2} \times \frac{m_N Q}{4\pi F_\pi^2}$$

• diagram 2

$$\propto \left(\frac{Q^{5}}{4\pi m_{N}}\right)^{3} \left(\frac{m_{N}}{Q^{2}}\right)^{5} \left(\frac{g_{A}Q}{F_{\pi}}\right)^{2} \frac{1}{Q^{2}} \times \frac{Q^{5}}{4\pi m_{N}} \frac{m_{N}}{Q^{2}} \frac{1}{Q^{2}} \frac{Q^{2}}{F_{\pi}^{2} \Lambda_{\chi}} \sim \frac{Q^{4} m_{N}}{(4\pi)^{2}} \times \frac{m_{N}Q}{4\pi F_{\pi}^{2}} \times \frac{Q^{3}}{4\pi F_{\pi}^{2} \Lambda_{\chi}}$$
LA-UR-24-27605

Three nucleon interactions

- in the last diagram, the ππNN vertex brings in a factor of Q/Λ_χ either from v ⋅ q factor in L⁽¹⁾_{πN} or from L⁽²⁾_{πN}
- a. standard Weinberg's counting

'it's down by
$$\mathcal{Q}^3$$
'' \Longrightarrow assumes $rac{\mathcal{Q}^3}{\Lambda_\chi^3}$ \Longrightarrow book in the N²LO potential

b. "Friar's counting"

"it's down by $Q/F_{\pi} \times Q^2/\Lambda_{\chi}^2$ " $\Longrightarrow \frac{Q^2}{\Lambda_{\chi}^2} \Longrightarrow$ book in the NLO potential

three nucleon forces are important to reproduce nuclear properties

J. Friar '96

Power counting of two-body currents

Two nucleon contributions: axial current

• the first interaction with an axial current appears in the NLO Lagrangian

$$\mathcal{L}^{p}_{NN} = -\frac{c_{D}}{2\Lambda_{\chi}F_{\pi}^{2}}\bar{N}S \cdot uN\,\bar{N}N = \frac{c_{D}}{2\Lambda_{\chi}F_{\pi}^{2}}\bar{N}\sigma^{i}\tau^{a}N\,\bar{N}N\left(\frac{\partial_{i}\pi^{a}}{F_{\pi}} - \bar{\ell}^{a}_{i} + \bar{r}^{a}_{i} + \ldots\right),$$

We can now power-count the relative importance of one- and two-body currents

• introduce the normalization factor (associate to the two-nucleon Z factor)

$$\mathcal{N} = \left(\frac{m_N^2}{4\pi Q}\right)^{-1}$$

Two nucleon contributions: axial current

• one body

$$\mathcal{J}_1^i \propto g_{A} \mathcal{N} imes \left(rac{Q^5}{4 \pi m_N}
ight) imes rac{m_N^3}{Q^6} pprox g_{A}$$

- π -N vertices from $\mathcal{L}^{p}_{\pi N}$ do not give corrections to the space component of the axial current
- need vertices from $\mathcal{L}_{\pi N}^{p^2}$

$$\mathcal{J}_2^i \propto g_A \mathcal{N} imes \left(rac{Q^5}{4\pi m_N}
ight) imes rac{m_N^3}{Q^6} imes rac{Q^5}{4\pi m_N} rac{m_N}{Q^2} rac{Q}{F_\pi^2 Q^2} rac{c_i Q}{\Lambda_\chi} pprox g_A c_i rac{Q^3}{4\pi F_\pi^2 \Lambda_\chi}$$

booked as N²LO or N³LO in different schemes

Two nucleon contributions: axial current

• the NN operator also comes from a NLO Lagrangian

$$\mathcal{J}_{3}^{i} \propto \mathcal{N} imes \left(rac{Q^{5}}{4\pi m_{N}}
ight) imes rac{m_{N}^{3}}{Q^{6}} imes rac{Q^{5}}{4\pi m_{N}} rac{m_{N}}{Q^{2}} rac{c_{D}}{F_{\pi}^{2}\Lambda_{\chi}} pprox c_{D} rac{Q^{3}}{4\pi F_{\pi}^{2}\Lambda_{\chi}}$$

- same order as OPE
- c_D also enters the 3-body force, can be fit to either three-nucleon properties, or β decays (e.g. ³H decay)

Two-nucleon contributions: scalar current

in Weinberg's counting, NN scalar interactions appear in N²LO NN Lagrangian

$$\mathcal{L}_{NN}^{(2)} = \frac{\text{Tr}[\chi_{+}]}{\Lambda_{\chi}^{2} F_{\pi}^{2}} \left[D_{2}^{3} S_{1} \left(N^{T} P_{3} S_{1} N \right)^{\dagger} N^{T} P_{3} S_{1} N + D_{2}^{1} S_{0} \left(N^{T} P_{1} S_{0} N \right)^{\dagger} N^{T} P_{1} S_{0} N \right] + \dots$$

then

$$\begin{split} \mathcal{S}_1 \sim 4Bc_1, \qquad \mathcal{S}_2 \sim B\frac{Q}{4\pi F_\pi^2} \qquad \mathcal{S}_3 \sim B\frac{Q^3}{4\pi F_\pi^2 \Lambda_\chi^2} \\ LO \qquad LO_{\rm F}/{\rm NLO_{\rm W}} \qquad {\rm N}^2 LO_{\rm F}/{\rm N}^3 LO_{\rm W} \end{split}$$

 c₁ is quite large
 W-counting might reflect the actual relative sizes better pion two-body currents found to be actually pretty small

C. Körber, A. Nogga, J. de Vries, '17

Two-nucleon contributions: scalar current

• in renormalized chiral EFT, $D_2^{^{1}S_0}$ is promoted to $\mathcal{L}_{NN}^{(0)}$

$$\mathcal{S}_3\sim Brac{Q^3}{4\pi F_\pi^2\Lambda_\chi^2}
ightarrow Brac{Q^3}{4\pi F_\pi^4}$$

- short-distance operators might give important contributions to the scalar matrix elements
- would be important to pin them down with data!

Some details on $\pi\text{-}N$ couplings and the CPV potential

Calculation of the CP-violating potential

$$\mathcal{L}_{\pi N} = -\frac{\bar{g}_0}{F_{\pi}}\bar{N}\boldsymbol{\pi}\cdot\boldsymbol{\tau}N - \frac{\bar{g}_1}{F_{\pi}}\pi_3\bar{N}N - \frac{\bar{g}_2}{F_{\pi}}\bar{N}\left(\pi_3\tau_3 - \frac{1}{3}\right)\boldsymbol{\pi}\cdot\boldsymbol{\tau}N + \dots$$

- · all pion-nucleon interactions break chiral symmetry
- \bar{g}_1 and \bar{g}_2 also break isospin by 1 and 2 units
- we can write down 5 S-P transition operators
- $\tilde{C}_{{}^{3}S_{1}-{}^{1}P_{1}}$ and $\tilde{C}^{(0)}_{{}^{1}S_{0}-{}^{3}P_{0}}$ conserve isospin (and chiral symmetry)
- $\tilde{C}_{{}^3S_1-{}^3P_1}$ and $\tilde{C}^{(1)}_{{}^1S_0-{}^3P_0}$ break isospin by 1 unit
- $\tilde{C}^{(2)}_{{}^1S_0-{}^3P_0}$ break isospin by 2 units

- · pion-nucleon couplings can be related to spectroscopic quantities, so we have some info
- $\bar{\theta}$ term

$$\bar{g}_0 = 2 \frac{m_n - m_p}{m_d - m_u} \frac{m_u m_d}{m_u + m_d} \bar{\theta} = g_S^{u-d} \bar{m} \theta \qquad \checkmark$$
$$\bar{g}_1 = \mathcal{O}(m_\pi^4)$$

• since $\bar{\theta}$ conserves isospin, \bar{g}_1 is only generated at subleading order

- · pion-nucleon couplings can be related to spectroscopic quantities, so we have some info
- $\bar{\theta}$ term

$$\bar{g}_0 = 2 \frac{m_n - m_p}{m_d - m_u} \frac{m_u m_d}{m_u + m_d} \bar{\theta} = g_S^{u-d} \bar{m} \theta \qquad \checkmark$$
$$\bar{g}_1 = \mathcal{O}(m_\pi^4)$$

- since $\bar{\theta}$ conserves isospin, \bar{g}_1 is only generated at subleading order
- qCEDM: need generalized sigma terms

$$ar{g}_0 = ar{d}_0 \left(rac{d}{d ilde{c}_3} + rrac{d}{d ilde{m}arepsilon}
ight) (m_n - m_
ho) \qquad ar{g}_1 = -ar{d}_3 \left(rac{d}{d ilde{c}_0} - rrac{d}{d ilde{m}
ho}
ight) (m_n + m_
ho)$$

with

$$ilde{m{ au}}_{0,3} = \mathrm{Im}\left(\mathrm{C}_{\mathrm{ug}}\pm\mathrm{C}_{\mathrm{dg}}
ight), \qquad ilde{\mathrm{c}}_{0,3} = \mathrm{Re}\left(\mathrm{C}_{\mathrm{ug}}\pm\mathrm{C}_{\mathrm{dg}}
ight), \qquad \mathrm{r} = -rac{1}{2}rac{\langle 0|ar{\mathrm{q}}\sigma\mathrm{G}\mathrm{q}|0
angle}{\langle 0|ar{\mathrm{q}}\mathrm{q}|0
angle}$$

- only the "tadpole" piece is known
- $\bar{g}_{0,1}$ are expected to be of the same size

prop. to r and the scalar charges

• LLRR four-fermion operators

$$ar{g}_0 = 0$$

 $ar{g}_1 = \mathrm{Im} L_{uddu}^{\mathrm{V1LR}} \left(rac{d}{d \mathrm{Re} L_{uddu}^{\mathrm{V1LR}}} + rac{r^{\mathrm{LR}}}{4} rac{d}{d ar{m}}
ight) (m_n + m_p)$

with $r^{\rm LR}$ some ratio of vacuum matrix elements

- r has been computed in Lattice QCD, for all the relevant operators
- the "direct" piece is not known
- since $L_{uddu}^{
 m V1LR}$ breaks isospin, $ar{g}_1 \gg ar{g}_0$

• *LLRR* four-fermion operators

$$\begin{split} \bar{g}_0 &= 0\\ \bar{g}_1 &= \mathrm{Im} L_{uddu}^{\mathrm{VILR}} \left(\frac{d}{d \mathrm{Re} L_{uddu}^{\mathrm{VILR}}} + \frac{r^{\mathrm{LR}}}{4} \frac{d}{d\bar{m}} \right) (m_n + m_p) \end{split}$$

with r^{LR} some ratio of vacuum matrix elements

- r has been computed in Lattice QCD, for all the relevant operators
- the "direct" piece is not known
- since $L_{uddu}^{
 m V1LR}$ breaks isospin, $ar{g}_1 \gg ar{g}_0$
- GGG 3-gluon operator
- is chiral invariant, all *π*-N couplings are suppressed
- $\tilde{C}_{{}^3S_1-{}^1P_1}$ and $\tilde{C}^{(0)}_{{}^1S_0-{}^3P_0}$ contribute at lowest order

different chiral/isospin breaking patterns \implies different relative importance of \bar{g}_0 , \bar{g}_1 and contact ... but need more quantitative determinations for any realistic analysis

The CPV nucleon-nucleon potential. $\bar{\theta}$ term

$$V^{(0)}_{ar{ heta}} = -rac{ar{ extsf{g}}_0 g_A}{F_{\pi}^2} m{ au}^{(1)} \cdot m{ au}^{(2)} \, \left(\sigma^{(1)} - ec{\sigma}^{(2)}
ight) \cdot ec{
abla} \left(rac{e^{-m_{\pi}r}}{4\pi r}
ight)$$

- LO: isoscalar OPE
- NLO: TPE & short range, same structure as LO

 $\mathcal{O}(m_{\pi}^2/\Lambda_{\chi}^2)$

The CPV nucleon-nucleon potential. $\bar{\theta}$ term

$$V_{\bar{\theta}}^{(2)} = \tau^{(1)} \cdot \tau^{(2)} \left(\sigma^{(1)} - \vec{\sigma}^{(2)} \right) \cdot \vec{\nabla} \left(-\frac{\bar{g}_0 g_A}{F_{\pi}^2} f_{\rm TPE}(r) + \bar{C}_2 \delta(\vec{r}) \right) + \frac{1}{2} \bar{C}_1 \left(\sigma^{(1)} - \vec{\sigma}^{(2)} \right) \cdot \vec{\nabla} \delta(\vec{r})$$

- LO: isoscalar OPE
- NLO: TPE & short range, same structure as LO

 $\mathcal{O}(m_{\pi}^2/\Lambda_{\chi}^2)$

The CPV nucleon-nucleon potential. $\bar{\theta}$ term

$$V_{\bar{\theta}}^{(2)} = -\frac{\bar{g}_{0}g_{A}}{2F_{\pi}^{2}} \left[\left(\frac{\bar{g}_{1}}{\bar{g}_{0}} - \frac{\beta_{1}}{2g_{A}} \right) (\tau_{3}^{(1)} + \tau_{3}^{(2)}) (\sigma^{(1)} - \sigma^{(2)}) + \left(\frac{\bar{g}_{1}}{\bar{g}_{0}} + \frac{\beta_{1}}{2g_{A}} \right) (\tau_{3}^{(1)} - \tau_{3}^{(2)}) (\sigma^{(1)} + \sigma^{(2)}) \right] \cdot \vec{\nabla} \left(\frac{e^{-m_{\pi}r}}{4\pi r} \right)$$

- LO: isoscalar OPE
- NLO: TPE & short range, same structure as LO

 $\mathcal{O}(m_{\pi}^2/\Lambda_{\chi}^2)$

isospin breaking terms + relativistic corrections

 $\mathcal{O}(\varepsilon m_\pi^2/\Lambda_\chi^2,m_\pi^2/m_N^2)$ see J. de Vries *et al*, '20 for a review

The CPV potential. Dimension-six operators

$$\begin{split} V_{6} &= -\frac{\bar{g}_{0}g_{A}}{F_{\pi}^{2}}\boldsymbol{\tau}^{(1)}\cdot\boldsymbol{\tau}^{(2)}\left(\boldsymbol{\sigma}^{(1)}-\boldsymbol{\sigma}^{(2)}\right)\cdot\vec{\nabla}\left(\frac{e^{-m_{\pi}r}}{4\pi r}\right) \\ &-\frac{\bar{g}_{1}g_{A}}{2F_{\pi}^{2}}\left[(\tau_{3}^{(1)}+\tau_{3}^{(2)})(\boldsymbol{\sigma}^{(1)}-\boldsymbol{\sigma}^{(2)})+(\tau_{3}^{(1)}-\tau_{3}^{(2)})(\boldsymbol{\sigma}^{(1)}+\boldsymbol{\sigma}^{(2)})\right]\cdot\vec{\nabla}\left(\frac{e^{-m_{\pi}r}}{4\pi r}\right) \\ &+\frac{1}{2}\left(\bar{C}_{1}+\bar{C}_{2}\boldsymbol{\tau}^{(1)}\cdot\boldsymbol{\tau}^{(2)}\right)\left(\boldsymbol{\sigma}^{(1)}-\boldsymbol{\sigma}^{(2)}\right)\cdot\vec{\nabla}\delta(\vec{r}) \end{split}$$

- qCEDM, LL RR and LR LR: isoscalar & isovector OPE
- gCEDM & LR LR : OPE & short range
- qEDM: photon-exchange (negligible)

EDMs of light nuclei: power counting

• for $\bar{\theta}$ term

$$d_{n,
ho}\sim rac{ar{g}_0m_\pi^2}{\Lambda_\chi^2}\ll ar{g}_0$$

nuclear EDMs sensitive to \bar{g}_0 should be somewhat enhanced compared to d_n

EDMs of light nuclei: power counting

• for qCEDM

$$d_{n,p}\sim rac{ar{g}_0m_\pi^2}{\Lambda_\chi^2}\ll ar{g}_0,ar{g}_1$$

nuclear EDMs sensitive to \bar{g}_0 and \bar{g}_1 should be somewhat enhanced compared to d_n

EDMs of light nuclei: power counting

for gCEDM

$$d_{n,p}\sim ar{g}_0$$

nuclear EDMs should be of the same size as d_n

