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Lecture 3: Construction of the low-energy EFTs for BSM probes

From quarks to hadrons: chiral perturbation theory and chiral EFT

BSM processes dominated by one-body operators

Chiral EFT for EDMs

BSM processes dominated by two-body operators: 0νββ

Light new physics: 0νββ with sterile neutrinos

Phenomenology
Neutrinoless double beta decay
Electric dipole moments
CKM unitarity
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From quarks to hadrons: chiral EFT

new physics Λ� v

SMEFT operators

SU(3)c × U(1)em operators

Chiral Effective Theory
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From quarks to hadrons
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• LEFT operators are expressed in terms of quark fields
e.g. consider the LNV operators discussed at the end of the last lecture

L∆L=2(ν, e, u, d) = −1
2

(mν)ijν
TjCν i + CΓ ν

T C ΓeOΓ + CΓ′e
T C Γ′eQΓ′

quark bilinear: q̄Γq four-quark: q̄Γ1q q̄Γ2q

• we need to consider processes with nucleons and nuclei

can we match onto an EFT for hadrons? L = L(π,N, . . .)?
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Chiral Perturbation Theory

L = −1
4

Ga
µνGaµν + q̄Li /DqL + q̄R i /DqR − q̄LMqR − q̄RMqL

• at the moment, we cannot compute many nuclear observables directly from QCD
• use symmetry once again!

SUL(2)× SUR(2)→ SUV (2)

pions are Goldstone boson
mπ � Λχ ∼ 1 GeV

strong constraints
on pion-N interactions
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The 1-nucleon sector: (Heavy) Baryon Chiral Perturbation Theory

1. degrees of freedom: pions (Goldstone bosons) and nucleons

2. symmetries: global SU(2)L × SU(2)R → SU(2)V

4. power counting: chiral symmetry & spontaneous breaking allow for an expansion in Q/Λχ

Q ∈ {p,mπ}, Λχ ∼ 4πFπ ∼ mN

3. interactions: realize the symmetry non-linearly, encode the pions into a matrix
& build “chiral covariant” objects

S. Weinberg, ‘79

• can be applied only to low-energy processes, Q � 1 GeV!

• to have consistent power counting, is convenient to use non-relativistic formulation
E. Jenkins and A. Manohar, ‘90

• but HBχPT is not a unique choice
infrared regularization T. Becher and H. Leutwyler, ‘99,

extended on-mass-shell scheme T. Fuchs, J. Gegelia, G. Japaridze, S. Scherer, ‘03

see supplemental slides for examples
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EFT in the 2 nucleon sector: Weinberg’s recipe

V = + …

S. Weinberg ‘90, S. Weinberg ‘91

• the fact that the nucleon energy is E � mπ plays a role!
Diagrams with almost on-shell intermediate nucleons are enhanced

1. identify “irreducible diagrams”
• do not have a purely A-nucleon intermediate state
• internal nucleon energies EN ∼ Q ∼ mπ

2. the potential V is the sum of irreducible diagrams
• can be calculated perturbatively in a power expansion in Q/Λχ following χPT counting rules

3. calculate the full amplitude by “stitching” together
irreducible diagrams with A-nucleon Green’s functions

• equivalent to solving the Schroedinger or Lippmann-Schwinger equation with V
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EFT in the 2 nucleon sector: Weinberg’s recipe

A = V + V V + ….

S. Weinberg ‘90, S. Weinberg ‘91

• the fact that the nucleon energy is E � mπ plays a role!
Diagrams with almost on-shell intermediate nucleons are enhanced

1. identify “irreducible diagrams”
• do not have a purely A-nucleon intermediate state
• internal nucleon energies EN ∼ Q ∼ mπ

2. the potential V is the sum of irreducible diagrams
• can be calculated perturbatively in a power expansion in Q/Λχ following χPT counting rules

3. calculate the full amplitude by “stitching” together
irreducible diagrams with A-nucleon Green’s functions

• equivalent to solving the Schroedinger or Lippmann-Schwinger equation with V
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Weinberg’s recipe

V(0) =

V(1) = - V(0) V(0)

• steps 1 and 2 are equivalent to integrating out “soft” and “potential” modes
and matching onto a theory with nucleons interacting via instantaneous potentials (chiral EFT)

happens in several other EFTs with > 1 heavy particles: NRQCD, NRQED

• the same recipe can be applied to operators that mediate BSM processes

=⇒ calculate matrix elements of BSM operators between nuclear wavefunctions

• the scaling of short-range operators assumes Weinberg’s ν (naive dimensional analysis)
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Chiral Potential in Weinberg’s power counting

Incredible progress
in calculation of chiral potentials!

from D. R. Entem, R. Machleidt and Y. Nosyk, ‘17

see also:

P. Reinert, H. Krebs, E. Epelbaum, ‘18

M. Piarulli et al, ‘16

M. Piarulli and I. Tews, ‘19

• LECs are fit to data in 2- and 3-nucleon systems
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Chiral Potential in Weinberg’s power counting
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GFMC calculations

AV18+IL7
EXP
NV2+3-Ia

and in predicting nuclear properties
(coupled to exact/semiexact methods

for solving Schroedinger eq.)

M. Piarulli et al, ‘17

• and predict light-nuclear observables
• chiral potentials as successful as high-quality phenomenological potentials (AV18, CD Bonn)
• and nowadays standard input for ab initio calculations

LA-UR-24-27605 7/26/2023 | 10

https://inspirehep.net/literature/1609295


Non perturbative renormalization and scaling of short-distance operators

1. chiral potentials have a singular short-range behavior
δ(~r), 1/r 3 potentials

2. which requires the introduction of regulators to solve the Schroedinger equation
3. the physics should not depend on these regulators, up to the order in Q/Λχ we are working at
4. there are cases in which renormalization conflicts with the naive power counting scaling of

short-distance operators

E.g. LO phase shift in the 1S0 channel

p cot δ(p) ≈ 4π
mN

1
C1S0

(Λ)
+

Λ√
2π

+
m2
π

MNN
log Λ + . . .

D. Kaplan, M. Savage, M. Wise, ‘96;

• the linear Λ dependence can be absorbed by renormalizing C1S0

• but, in Weinberg’s counting, C1S0
is independent on the pion mass =⇒ cannot absorb the log

• a N2LO mass dependent operator needs to be promoted to LO

L(2)
NN = −m2

π [D2]1S0

(
NT P1S0

N
)†

NT P1S0
N
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Non perturbative renormalization and scaling of short-distance operators

In the construction of chiral EFT operators for BSM physics

1. assume Weinberg’s scaling for short-distance operators

2. check in simple (2- or 3-nucleon) systems that the results can be made regulator independent
(at a given order in Q/Λχ)

3. if not, adjust the scaling

• failure of doing so leads to underestimate of the theory error

we’ll claim O((Q/Λχ)n+1) errors while there are missing pieces at O((Q/Λχ)n)
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Nuclear EFTs for BSM physics
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BSM processes dominated by 1-body currents

LBSM = q̄Γτ aqXa + q̄ΓqX0 + s̄ΓsXs, q = (u, d)T , Γ = {1, γ5, γ
µ, γµγ5, σ

µν}

• non-standard charged-currents in β decays X+ = ē Γν
• coherent neutrino-nucleus scattering (CEνNS) Xu,d,s = ν̄γµν
• µ→ e conversion in nuclei Xu,d,s = ēΓµ
• dark-matter - nucleus scattering Xu,d,s = χ̄Γχ
• neutron EDM from qEDM, molecular electric dipole moments

Xu,d,s = ēγ5e, F̃µν
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One-body operators
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Flavor Lattice Averaging Group nucleon matrix elements

• we typically need

〈N|q̄Γ
{
τ a, 1

}
q, s̄Γs|N〉 =⇒ 〈N|N̄Γ

{
g(1)

Γ τ a, g(0)
Γ , g(s)

Γ

}
N|N〉,

• the r.h.s can be systematically constructed in HBχPT
• but the one-body low-energy constants need data/Lattice QCD see Huey-Wen Lin’s Lectures
• isovector LECs are known with good accuracy

• isoscalar and strange matrix elements are more uncertain
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One-body operators
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Two nucleon contributions: axial current

y y y y y y

gA gA × Q3

FπΛ2
χ

gA × Q3

FπΛ2
χ

• we can include subleading corrections, such as two-body currents
• these arise from pion-exchange diagrams and contact interactions

Lp
NN = =

cD

2ΛχF 2
π

N̄σiτN N̄N ·
(

1
Fπ
∇iπ − ai

)
• cD needs to be extracted from data (no LQCD available)
• and contribute at N2LO/N3LO (depending a bit on the counting scheme)
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Axial current

A. Baroni, S. Pastore, R. Schiavilla, M. Viviani, ‘16

H. Krebs, E. Epelbaum, U. Meissner, ‘16

from A. Baroni et al, ‘16

• calculation of SM currents have been carried out at very high order
• like for the potential, need to subtract the “reducible” components
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Axial current: impact of two-body currents

NV2+3-Ia∗

NV2+3-Ia

AV18+ IL7

G. King, L. Andreoli, S. Pastore, M. Piarulli, R. Schiavilla, ‘20

• percent level predictions of β decay observables!
• LO currents (empty symbols) and N3LO currents (full symbol) differ by a few percent
• results still sensitive to extraction of cD from triton decay (magenta)

or from trinucleon binding energy and nd scattering (blue)

indication of sensitivity to the next order

• for SM background, % level corrections are important,
but they won’t affect the BSM contrib. that much
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Impact of better hadronic matrix elements
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projections from T. Bhattacharya et al, ‘11

Current β decays
Current LHC

Future β decays
Future LHC

R. Gupta et al, ‘18

• projection on the extraction of scalar and tensor couplings from β decay experiments
• assuming quark model estimates of gS and gT vs. target precisions of LQCD calculations
• factor of 2-3 needed to keep up with LHC!
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EFT for electric dipole moments



Electric dipole moments

• one dim-4 operator: QCD θ̄ term

Lθ =
g2

s

32π2 θG̃
a
µνGaµν −mq q̄LqR −m∗q q̄RqL

a. quark bilinears:
L =

∑
q=u,d,s

ImLqγ q̄σµνγ5q Fµν + LΓΓ′ ēΓe q̄Γ′q

b. quark-gluon chiral-breaking operators

L =
∑

q=u,d,s

ImLqg q̄σµνγ5taq Ga
µν

c. gluon chiral invariant operators
L = LG̃f abcG̃a

µνGb ν
ρ Gc µρ

d. chiral-breaking four-fermion
L = LV1LR

uddu (ūLγ
µdL) (d̄RγµuR) + . . .

how do we use measurements of CP-violation in different systems
to identify the underlying mechanism?
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Electric dipole moments: theory input.

1. HfF , ThO and YbF
• depend mostly on the electron EDM and scalar semileptonic operators
• at lowest order, same single nucleons parameters as for the scalar charge σπN , σs

• calculation of precession frequency mostly an atomic/molecular physics problem
. . . small uncertainties . . .

2. neutron EDM
• sensitive to Lqγ and hadronic operators
• for Lqγ , just need the tensor charges

dn = 〈n|q̄σµνq|n〉εµναβFαβ ∝ gT

. . . small uncertainties . . .
• for fully hadronic operators, typically need

〈n|q̄Qqγ
µq
∫

d4xOCPV(x)|n〉

challenging in Lattice QCD
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Electric dipole moments: theory input

3. EDMs of light ions (deuteron, 3He)
• receives contributions from the EDMs of the constituent nucleons
• and from corrections to the wavefunctions induced by CP-violating NN potentials

~dA = 〈A|~σ(dnPn + dpPp)|A〉+
∑

n

〈A|~r |n〉〈n|VCP|A〉
EA − En

• the relative size of the two depends on specific CP-odd operator

4. EDMs of diamagnetic atoms: 199Hg, 129Xe, 225Ra
• the EDMs of the constituent nucleons are screened
• depend on the Schiff operator

~dA =
∑

n

〈A|~r
(
r 2 − 5

3 〈r
2〉ch

)
|n〉〈n|VCP|A〉

EA − En

Need:

1. dn,p(CLEFT) 2. VCP(CLEFT) 3. nuclear matrix elements
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Lattice QCD calculations of nEDM. θ̄ term
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T. Bhattacharya, et al, ‘21 J. Liang, et al (χQCD Coll.), ‘23

• baseline for all nEDM calculations
• EDM from QCD θ̄ term extremely challenging

vanishing signal at small mπ, large excited state contamination, . . .
• published results compatible with zero at ∼ 2σ
• approaching dn ∼ 10−3 θ̄ e fm, size of “chiral log”

Crewther, Di Vecchia, Veneziano and Witten, ‘79

• need more work to control all systematics
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nEDM from dimension-6 operators
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QCD sum rules

• preliminary results for qCEDM and gCEDM
• error still a factor of 5 larger than QCD sum rule estimate
• no studies of 4-fermion operators yet

best results still from QCD sum rule calculations
Pospelov and Ritz, ‘05, Haisch and Hala, ‘19
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Calculation of the CP-violating potential

LπN = − ḡ0

Fπ
N̄π · τN − ḡ1

Fπ
π3N̄N − ḡ2

Fπ
N̄
(
π3τ3 −

1
3

)
π · τN + . . .

• all pion-nucleon interactions break chiral symmetry,
• ḡ1 and ḡ2 also break isospin by 1 and 2 units
• we can write down 5 S-P transition operators

– C̃3S1−1P1
and C̃(0)

1S0−3P0
conserve isospin (and chiral symmetry)

– C̃3S1−3P1
and C̃(1)

1S0−3P0
break isospin by 1 unit

– C̃(2)
1S0−3P0

break isospin by 2 units
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Calculation of the CP-violating potential

• the relative importance depends on the chiral symmetry properties of CPV operators
• θ̄: ḡ0 � ḡ1

• qCEDM: ḡ0 ∼ ḡ1

• LL RR 4-fermion: ḡ0 � ḡ1

• 4-nucleon operators are usually neglected, but this is not always justified!
see J. de Vries, A. Gnech, S. Shain, ‘20

• only ḡ0(θ̄) is known well, for other LEFT operators only order of magnitude estimates
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EDMs of light nuclei: chiral calculations

αn αp a0 (e fm) a1 (e fm) a2 (e fm)

d 0.9 0.9 0 −0.100 0

3He 0.9 0 −0.027 −0.079 −0.060

3H 0 0.9 0.027 −0.079 0.060

using the calculation of A. Gnech and M. Viviani, ‘19

dAX =

(
αndn + αpdp + a0

ḡ0

Fπ
+ a1

ḡ1

Fπ
+ a2

ḡ2

Fπ

)
• for light ions, the nuclear theory input is under control (at the ∼ 10% level)
• αn,p agree with PC expectations
• a0 and a1 are a bit smaller then expected
• light nuclei can be important filters, singling out different isospin structures

e.g. N = Z nuclei single out ḡ1
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Diamagnetic atoms and Schiff moment calculations

ASchiff αn αp a0 (e fm) a1 (e fm) a2 (e fm)

199Hg −(2.40± 0.24) · 10−4 1.9± 0.1 0.20± 0.06 0.13+0.5
−0.07 0.25+0.89

−0.63 0.09+0.17
−0.04

129Xe −(0.364± 0.025) · 10−4 −(0.29± 0.10) – 0.10+0.53
−0.037 0.076+0.55

−0.038

225Ra (6.3± 0.5) · 10−4 – – 2.5± 7.5 −65± 40 14± 6.5

• Schiff moments have similar expressions (though the operators are more complicated)

dAX = ASchiff

(
αndn + αpdp + a0

ḡ0

Fπ
+ a1

ḡ1

Fπ
+ a2

ḡ2

Fπ

)
• for diamagnetic atoms, at the moment, no EFT calculations exists
• Schiff moments have been calculated with pheno models and have large nuclear theory errors

see J. Engel, M. Ramsey-Musolf, U. van Kolck, ‘13, T. Chupp, P. Fierlinger, M. Ramsey-Musolf, J. Singh ‘17

• similar hierarchies as for light nuclei, except large enhancement for Ra
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Disentangling CP-violating mechanisms

0.0 0.5 1.0 1.5 2.0 2.5 3.0
dn + dp (e fm) 1e 13

1
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d
d
(e

fm
)

1e 12

θ̄

v2c̃(u)
g

v2c̃(u)
γ

How do we use this info? Suppose we can measure dn, dp and dd

• dd � dn + dp isospin-breaking sources
• dd ∼ dn + dp QCD θ̄ term
• dd = dn + dp qEDM, Weinberg operator

. . . but swamped by current theory uncertainties

• O(20%) uncertainties sufficient to discriminate!
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Processes dominated by two-body operators
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Neutrinoless double beta decay in SMEFT + chiral EFT

d

u

e-







e-

e-

d u

d u
v
Λ

v3

Λ3
v3

Λ3 , v5

Λ5

• as discussed in Lecture 2, in SMEFT we can have several sources of LNV
a. Majorana masses of active and sterile neutrinos

MLν
T
L CνL, MRν

T
R CνR ,

b. β decay operators with neutrinos vs antineutrinos

ūΓd νT
L CΓ′e, ūΓd νT

R CΓ′e

c. four-quark two-lepton operators
(ūΓd)

(
ūΓ′d

)
eT Ce

accurate predictions for each mechanism?
differentiating between different mechanisms?
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Neutrinoless double beta decay in chiral EFT. Standard Mechanism

• in the “standard mechanism”, 0νββ is induced by the exchange of Majorana neutrinos
• the lepton tensor combines in a form that looks like a boson propagator

Lµν → gµν ēLec
L

∑
U2

eimi

q2 −m2
i + iε

• at lowest order, neutrinos couple to the nucleons via the weak axial and vector currents
• the leading contrib. comes from “potential modes” q0 ∼ ~q2/mN � |~q|

neutrino exchange gives rise to a weak potential, on top of the QCD potential

V (a,b)
ν,0 = τ (a)+τ (b)+ 1

~q2

{
1− g2

A

[
σ(a) · σ(b) − σ(a) · ~q σ(b) · ~q 2m2

π + ~q2

(~q2 + m2
π)2

]}
.

• in Weinberg’s counting, this is the only LO contribution
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Neutrinoless double beta decay in chiral EFT

(A)

(F)

(K)

(P)

(B) (C) (D) (E)

(G) (H) (I) (J)

(L) (M) (N) (O)

(Q) (R) (S)

O
(

1
Λ2
χ

)

• beyond LO, we can consider pion-neutrino-nucleon loops + local counterterms
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Usoft corrections to 0νββ

• and contributions from neutrinos with very small momentum (q0, ~q) ∼ Q
• they see the nucleus as a whole, and yield expressions very similar to “standard” QM

Tusoft = −Tlept

4

∑
n

∫
dd−1k

(2π)d−1

1

|~k |

[
〈f |Jµ|n〉〈n|Jµ|i〉

|~k |+ E2 + En − Ei − iη
+

〈f |Jµ|n〉〈n|Jµ|i〉
|~k |+ E1 + En − Ei − iη

]

= Tlept ×
1

8π2

∑
n

〈f |Jµ|n〉〈n|Jµ|i〉
{

(E2 + En − Ei )

(
log

µus

2(E2 + En − Ei )
+ 1
)

+ (1→ 2)

}
,

• where E1,2 are the electron energies,
Ei , Ef , En the initial, final and nuclear intermediate state energy

• the corrections scale as E/kF , similar to “closure corrections” in pheno approaches
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0νββ at N2LO

1. correction to the one-body currents (magnetic moment, radii, . . . )

∼ O
(

Q2

Λ2
χ

)
2. pion-neutrino loops, local counterterms

∼ O
(

Q2

Λ2
χ

)
3. ultrasoft contributions (“closure corrections”)

∼ O
(

∆E
4πkF

)
3. two-body corrections to V and A currents

all these corrections should be fairly small
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Neutrinoless double beta decay beyond Weinberg
• is this picture consistent?
- should check that the local counterterms follow Weinberg’s counting
- the neutrino potential might cause problems similar to the OPE potential in 1S0

Consider the 2-to-4 process nn→ ppe−e−

=

 ...+ +

 ...

 ...+

A

B

C
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0νββ in renormalized chiral EFT

0.005 0.010 0.050 0.100 0.500
RS (fm)

0.035

0.040

0.045

0.050

0.055

0.060

Aν (MeV
-2)

• need to solve the Schrödinger equation with the LO chiral potential

Vstrong(r) = C̃1S0
δ

(3)
RS

(~r) +
g2

Am2
π

16πF 2
π

e−mπ r

4πr

• take the matrix element and check that it is cut-off independent

Aν(nn→ ppe−e−) = 〈pp|Vν,0|nn〉
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0νββ in renormalized chiral EFT

0.005 0.010 0.050 0.100 0.500
RS (fm)

0.035

0.040
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0.055
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-2)

g̃NN
ν = g̃(0)NN

ν − 1
2 (1 + 2g2

A) log RS

V. Cirigliano, W. Dekens, J. de Vries, M. Graesser, EM, S. Pastore, U. van Kolck, ‘18

• the matrix element of the long-range neutrino potential is UV divergent!
• need to promote the N2LO counterterm to LO!

unexpected systematic only diagnosed with EFT tools!
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Determination of gNN
ν and interplay with Lattice QCD

0.00 0.05 0.10 0.15 0.20 0.25
m2
π (GeV2)
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S
π
π

χPT
24I

Pred.
32I

W. Detmold and D. Murphy, ‘20

n p

n p

e-

e-

Z. Davoudi et al, ‘24

mπ = 806 MeV

0. data driven extraction?

• no LNV data 7

• chiral symmetry relation to isospin-breaking photon exchange processes

gNN
ν = gCIB

only true at the order-of-magnitude level
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Determination of gNN
ν and interplay with Lattice QCD
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mπ = 806 MeV

1. Lattice QCD offers the most direct avenue
• long distance contributions to π 0νββ already computed

X.-Y. Tuo, X. Feng and L.-C. Jin, ‘19, W. Detmold and D. Murphy, ‘20

• first calculation of the nn amplitude!

2. model the forward W +nn→ W−pp amplitude with chiral EFT + OPE

g̃NN
ν (µ = mπ) = 1.32(50)inel(20)r(5)par = 1.3(6) compares well with “naive” CIB assumption

V. Cirigliano, W. Dekens, J. de Vries, M. Hoferichter, EM, ‘20LA-UR-24-27605 7/26/2023 | 37
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Impact on 0νββ nuclear matrix elements

0 1 2 3 4 5 6 7 8
M0ν

EM(1.8/2.0)

6He →6Be

EMN(2.0)
LNL(2.0)
ΔN2LOGO(2.0)
ΔN2LOGO(∞)

EM(1.8/2.0)
EMN(2.0)
LNL(2.0)
ΔN2LOGO(2.0)
ΔN2LOGO(∞)

8He →8Be

EM(1.8/2.0)(eMax =6)
EM(1.8/2.0)(eMax =8)
EM(1.8/2.0)(eMax =10)
EM(1.8/2.0)(ext a.)

48Ca →48Ti
IT-NCSM
IM-GCM

L
LΔS

R. Wirth, J. M. Yao, H. Hergert, ‘21

• fit the “synthetic” amplitude to 3 different chiral potentials
• SRG-evolve strong and weak potential & calculate 48Ca NME

43% shift in 48Ca
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0νββ transition operators from dim-7 operators

n p

n p

e-

e-

gA = 1.27

gS = 1.02± 0.10

gM = 4.7

gT = 0.99± 0.03

g′T = O(1)

B = 2.7 GeV

L(6) =
2GF√

2

{
ūLγ

µdL

[
ēRγµC(6)

VLR ν + ēLγµC(6)
VLL ν

]
+ ūRγ

µdR

[
ēR γµC(6)

VRR ν + ēL γµC(6)
VRL ν

]

+ūLdR

[
ēL C(6)

SRRν + ēR C(6)
SRLν

]
+ ūRdL

[
ēL C(6)

SLRν + ēR C(6)
SLLν

]
+ ūLσ

µνdR ēLσµνC(6)
TRR ν + ūRσ

µνdL ēRσµνC(6)
TLL ν

}
+ h.c.

• need axial, vector, scalar, pseudoscalar and tensor one-body currents
• nucleon matrix elements are well determined experimentally or in LQCD (with one exception)
• the diagrams can be computed exactly as in the “standard case”.

The final result is a bit of a mess V. Cirigliano et al, ‘18; W. Dekens et al, ‘20
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0νββ from dimension-9 operators

n p

n p

e-

e-

n p

n p

e-

e-

n p

n p

e-

e-

• need to study the hadronization of 4-quark 2-electron operators
• once the chiral analysis is done, very large ππ couplings for most operators

G. Prezeau, M. Ramsey-Musolf, P. Vogel, ‘03;
A. Faessler, S. Kovalenko, F. Simkovic, J. Schwieger, ‘97

• renormalization then requires NN couplings @ LO
• factorization is a bad approximation!

e.g O4

〈pp|ūLγ
µdL ūR γµdR |nn〉 6= 〈p|ūLγ

µdL|n〉 〈p|ūR γµdR |n〉

error from neglecting ππ couplings� than from NME
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ππ matrix elements
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ε2π = (mπ/(4πFπ))2
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i
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4 ]

a ∼ 0.09 fm a ∼ 0.12 fm a ∼ 0.15 fm

A. Nicholson et al., CalLat collaboration, ‘18

gππ1 = +0.4

gππ2 = −(1.8GeV)2

gππ3 = +(1.0GeV)2

gππ4 = −(1.7GeV)2

gππ5 = −(3.6GeV)2

• ππ matrix elements well determined in LQCD good agreement with naive chiral counting
• NME differ dramatically from factorization

Mππ = −
gππ4 C(9)

4

2m2
N

(
1
2

MGT
AP,sd + MGT

PP,sd

)
∼ −0.60C(9)

4 vs Mfact = −
3g2

A − 1

2g2
A

m2
π

m2
N

C(9)
4 MF ,sd ∼ −0.04C(9)

4

• which becomes a factor of 225 in the rate!
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Ab initio calculations of 0νββ ME

A. Belley, S. Stroberg, J. Holt, ‘23 A. Belley, J. M. Yao et al, ‘23

M0νββ = 2.60+1.30
−1.36

• first ab initio calculations in 48Ca, 76Ge, 82Se, 130Te and 136Xe

promising step towards controlled calculations with solid estimate of theory systematics
• nuclear matrix elements for BSM mechanisms can be evaluated in the same way
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Light new physics



Nuclear physics with light new particles

• we mostly focused so far on heavy new physics
• but there are several scenarios in which BSM particles are light and weakly coupled

axions, dark photons, light dark matter, . . .
• EFTs can still provide a useful framework, but

a. new degrees of freedom need to be added to the theory

b. their masses and couplings are additional free parameters

1. we care about production or scattering of the new particle & there are no light mediators

=⇒ nuclear physics treatment is the same as for other non-strongly interacting probes
examples: χA→ χA A. Fitzpatrick, W. Haxton, E. Katz, N. Lubbers, Y. Xu, 12,

M. Hoferichter, P. Klos, J. Menendez, A. Schwenk, ‘16

2. the new particle mediates rare processes, such as 0νββ or µA→ eA

=⇒ nuclear and hadronic matrix elements will depend on the particle mass

examples: sterile neutrinos, axion-like-particles with LFV couplings
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Phenomenology



Neutrinoless double beta decay



Bounds on effective operators
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Hyvärinen et al. ‘15 Menéndez et al. ‘17

• 0νββ puts strong limits on dim. 7 operators no way to probe at LHC

• dim. 9 in the TeV range

pattern can be understood from effective dimension & chiral properties of 0νββ operator
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Bounds on effective operators
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0νββ in the left-right symmetric models
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G. Li, M. Ramsey-Musolf, J. C. Vasquez, ‘20

enhancement from
ππ operators

Having the right hadronic and nuclear physics is important for pheno! E.g. LR symmetric model
• WL-WR mixing contribution enhanced by gππ4 , gππ5

• possible signal in tonne-scale experiments even with NH
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Electric dipole moments



Constraints on weak gauge-Higgs operators
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LHC EDM + B → Xsγ + LEP

V. Cirigliano, A. Crivellin, W. Dekens, J. de Vries, M. Hoferichter, EM, ‘19

g γ γ

g γ, Z W W

q q q q, ℓ q, ℓ q, ℓ d, u, ℓ u, d, ν d, u, ℓ

h h

OϕG̃ OϕW̃ , OϕB̃, OϕW̃B OϕW̃B, OW̃

q

LHC projections of Bernlochner et al, ‘18

• eEDM dominates single coupling analysis
• hadronic EDMs constrain 2 directions

dn, dHg and dRa largely degenerate
• need LEP, B → Xsγ or LHC to close free directions

strong correlations to avoid EDMs

LA-UR-24-27605 7/26/2023 | 46

https://inspirehep.net/literature/1724479
https://inspirehep.net/literature/1688866


Identifying right-handed charged currents

[CHud ]ud

assuming factor of 3 improvement
on theory errors

• u − d RHCC can explain Cabibbo anomaly
• eEDM is very small (two loop and light quark mass suppression)
• π-N contributions to nuclear and atomic EDMs enhanced
• an observation of dn should lead to large expected deuteron EDM (or Hg and Ra)

• but could lead to too large corrections to ε′/ε!

once again, important to reduce errors!

LA-UR-24-27605 7/26/2023 | 47



Identifying right-handed charged currents

[CHud ]ud

assuming factor of 3 improvement
on theory errors

• u − d RHCC can explain Cabibbo anomaly
• eEDM is very small (two loop and light quark mass suppression)
• π-N contributions to nuclear and atomic EDMs enhanced
• an observation of dn should lead to large expected deuteron EDM (or Hg and Ra)
• but could lead to too large corrections to ε′/ε!

once again, important to reduce errors!
LA-UR-24-27605 7/26/2023 | 47



CKM unitarity



SMEFT interpretations of the Cabibbo anomaly

*
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*
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ūRγ
µdRWµ couplings win!

V. Cirigliano, W. Dekens, T. Tong et al, ‘23

• β decays + EWPO constraints + Drell-Yan crucial for interpretation of CAA
• consider 1024 choices of combinations of SMEFT couplings
• perform a simultaneous fit to low-energy, Z -pole and collider data
• and organize the “models” according to their AIC score
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Assessing the error on 0+ → 0+ decays

e
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e
n

e
n
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(e)

n
e

n e
n e n e
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a2

• but even more important is to develop EFT for radiative corrections and validate estimates of the
theory error

• “Nuclear Theory for New Physics” topical collaboration,
to address all aspects of the problem, from LQCD, to EFT, to nuclear structure
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Conclusion

• EFTs + LQCD + ab initio methods promise to deliver predictions of nuclear processes from QCD
particularly important for the interpretation of “fundamental symmetry” experiments

• plenty of work to do on all three fronts!
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Nuclear physics with light new particles

1. mW & mX & mN : integrate out X in perturbation theory, match onto LEFT

2. 500MeV & mX & mN : trickiest region, as no perturbative tools available

3. mX ∼ mπ: treat X as a pion, typically only soft and potential regions matter

3. mX � mπ: soft, potential and ultrasoft contributions to be expected

One example: sterile neutrinos and 0νββ
• singlet under SU(2)L, can be treated in νSMEFT
• retaining only dim-4 interactions, and after EWSB

L = −
[

MR

2
νT

R CνR +
v√
2
νLνR + h.c.

]
• 3 + n massive neutrinos, interactions parameterized by a (3 + n)× (3 + n) unitary matrix U
• which satisfy

3+n∑
i=1

miU2
`i = 0 ` = e, µ, τ



0νββ with sterile neutrinos

• naively

Vν,0 =
3∑

i=1

mi U2
eiτ

(a)+τ (b)+

{
1
~q2

(
1− g2

Aσ
(a) · σ(b)

)
− 2gNN

ν

}

=⇒
3+n∑
i=1

mi U2
eiτ

(a)+τ (b)+

{
1

~q2 + m2
i

(
1− g2

Aσ
(a) · σ(b)

)
− 2gNN

ν

}
.

only true if mi ∼ mπ!



0νββ with sterile neutrinos

• if mi > few GeVs, integrate out at the quark level

L − 4G2
F

mi
U2

ei ūLγ
µdL ūLγµdL ēLCēL

• which then hadronizes like a 4-fermion operator

ūLγ
µdL ūLγµdL ēLCēL =⇒ gNN

1 p̄n p̄nēLCēL

• and the double beta operator becomes

τ (a)+τ (b)+

{
3∑

i=1

miU2
ei

[
1
~q2

(
1− g2

Aσ
(a) · σ(b)

)
− 2gNN

ν

]
+

3+n∑
h=4

1
mh

U2
eh4gNN

1

}
• In the factorization assumption 4gNN

1 = 1 + 3g2
A =⇒ large mi limit of the naive expressions

. . . but we know factorization can be deeply wrong



0νββ with sterile neutrinos

• if mi � mπ, we can drop it from the neutrino potential
• but if mi ∼ Ef − Ei , will affect the usoft integrals

A(usoft)
ν (mi ) = 8

πRA

g2
A

∑
n

〈0+
f |Jµ|1

+
n 〉〈1+

n |J µ|0+
i 〉
∫

dd−1k
(2π)d−1

1
Eν [Eν + ∆E1 − iε]

+ (∆E1 → ∆E2) ,

• which gives

A(usoft)
ν = 2

RA

πg2
A

∑
n

〈0+
f |J

µ|1+
n 〉〈1+

n |Jµ|0+
i 〉
(

f (mi ,∆E1) + f (mi ,∆E2)
)
,

with

f (m,E) =

{
−πm if m� E ,
m2

E log m
2E , if m� E .

• in both regions, these are larger than what one would get taking the limit of the naive expression



0νββ with sterile neutrinos

0.01 0.10 1 10 100 1000

1027

1031

1035

1039

1043

EFT approach

“naive” lifetime

• so the 0νββ amplitude

[
T 0ν

1/2

]−1
= g4

AG01V 4
ud

∣∣∣∣∣
3+n∑
i=1

miU2
ei
(
Aνpot(0) + Aνusoft(mi )

)∣∣∣∣∣
2

• but remember
∑3+n

i=1 miU2
ei = 0!

usoft is the leading contribution surviving for sterile neutrino!
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