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Classical vs Quantum Computing

Classical
Bits O, 1 (False, True)

Irreversible logical operations

INPUT | OUTPUT

A  B| AORB
0 0 0
0O 1 1
110 1
1|1 1

Universality: Any logical functions can be
built from a small sets of gates.

Quantum
Qubits |0>, |1>
Reversible unitary operations
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Universality: Any unitary transformation can
be built from a small set of unitary
operators.
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Single qubit operations

e States on qubitare |T) =|0) and [{) = |1)

 Question: What is the most general state we can make from these basis states?



Single qubit operations

e States on qubitare |T) =|0) and [{) = |1)

 Question: What is the most general state we can make from these basis states?
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* Answer: states generated by SU(2) rotations, e.g. by the Wigner matrix Dglk (a,B,7)
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Single qubit operations cont’d

States on qubit are |T) = |0) and

Consider Pauli matrices X = g, =

A1l: Pauli matrices are Hermitian
A2: Pauli matrices are unitary

A3: All of the above
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Question: What are the relevant properties of Pauli matrices?
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Single qubit operations cont’d

States on qubit are |T) = |0) and

Consider Pauli matrices X = g, =

Question: What are the relevant properties of Pauli matrlces?

A1l: Pauli matrices are Hermitian
A2: Pauli matrices are unitary

A3: All of the above

l) =
0 17
1 0F

Thus, the Pauli matrices and exponentials e
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,and Z =0, = [(1) _01]

are all unitary operators



Two qubit operation: CNOT

Control qubit

L
N

L/
Target qubit

Before
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CNOT — e'i%(Il—Zl)(I2_X2) _ e_i%(ll—zl)(IZ—Xz)‘

Q: How does the CNOT gate work (look at the table)?

After

Control Target Control Target
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Image credits: wikipedia



Two qubit operation: CNOT

Control qubit Before After
Control  Target Control Target
@
0) 0) 0) 0)
AR o | L o |
N 1) 0) 1) 1)
Target qubit 1 T T 0

CNOT — e'i%(Il—Zl)(I2_X2) _ e_i%(ll—zl)(IZ—Xz)‘

Q: How does the CNOT gate work (look at the table)?
A: The CNOT gate flips the target qubit if and only if the control qubit is in state |1).

Any unitary operation on N qubits can be realized as a product of single-qubit unitary operations
and CNOT operations. The CNOT entangles states of two qubits.

Image credits: wikipedia



Storing and processing information

 Computing frontier: The memory on Frontier’s compute nodes
can store about 10 Peta Byte = 2°° bit of information

 Question: How many qubits does one need to store this
amount of information?



Storing and processing information

 Computing frontier: The memory on Frontier’s compute nodes
can store about 10 Peta Byte = 2°° bit of information

 Answer: 56 error corrected qubits

Thus it seems that qguantum computers could revolutionize
storage and processing of information

... drum roll
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Due to intense interest in the potential applications of quantum computing, it
is critical to understand the basis for potential exponential quantum advan-
tage in quantum chemistry. Here we gather the evidence for this case in the
most common task in quantum chemistry, namely, ground-state energy esti-
mation, for generic chemical problems where heuristic quantum state pre-
paration might be assumed to be efficient. The availability of exponential
quantum advantage then centers on whether features of the physical problem
that enable efficient heuristic quantum state preparation also enable efficient
solution by classical heuristics. Through numerical studies of quantum state
preparation and empirical complexity analysis (including the error scaling) of
classical heuristics, in both ab initio and model Hamiltonian settings, we
onclude that evidence fo an ex ential advantage acro hemica
space has yet to be found. While quantum computers may still prove useful for
ground-state quantum chemistry through polynomial speedups, it may be

prudent to assume exponential speedups are not generically available for this
problem.

“While quantum computers may still prove
useful for ground-state quantum chemistry
through polynomial speedups, it may be
prudent to assume exponential speedups
are not generically available for this
problem.”

Quantum chemistry: coupled-cluster
methods scale polynomially. Will be hard
to beat.



Quantum Utility

Quantum computers will probably be around in the future

1. Let us find out how they could be used in nuclear (structure)
theory

2. Let us find out how ideas from quantum information might be
useful in nuclear theory



Quantum computing summary

* Only unitary transformations are allowed
— these are reversible
— No information is lost

 Measurements (i.e. projections of states onto the
computational basis states [T) = |0) and |l) = |1)) at the end
of a computation are irreversible

* SO0 quantum computing means:
— transform a sequence of unitary operations on qubits
— make a measurement at the end



Quantum Circuits

Single-qubit unitary U Measurements on each
acts on qo. qubit yields results z; ,.

% |o)— U

0)

Qubits are initially in |0)

d1

Two-qubit unitary CNOT acts on g and g;.
Creates entangled quantum states.

time

Image credit:
https://dojo.qulacs.org/en/gp_main/notebooks/1.4 _quantum_circuit_diagram.html



Mapping fermions to qubits

* States on qubitq are [T), =[0), and [l), =[1),
* Reminds us of fermion states |1), = @, |0),

* Note: lowering the spin of state |0) generates the “occupied”

state |1), thus spin lowering and fermion creation are related
(and spin raising and fermion annihilation)



Mapping of operators

Spin raising / lowering operator o4 = %(O-x + io'y) —

- o0 O

o -

Notation: (a,gq) T+ iaj@) = Xy £ 1Y,

1 . 1 .
Thus, we have E(Xq —iY,)|0) = [1) and E(Xq + iY,)|1) = [0)

Question: How do we implement &2{ using spin operators?

Hint: need {ap,az{} 6, and {ap,a;} =0



Mapping of operators

Spin raising / lowering operator oy = %(O‘x + iay) = <

N Y=N=

o -

Notation: (J,EQ) T+ iaqu)) = Xy £ 1Y,
Thus, we have = (X, — i¥,)[0) = |1) and (X, + i¥,)[1) = |0)

. 1 g—1 .
Answer: ) = El_[glzo(—Zn) (Xq —iYg) N
q: , 1, —
Thus the convention is dg a7 ---a;_410) = |1,1,---, 1).

Note the cost of this Jordan-Wigner mapping is O(N) for N qubits;
Bravyi-Kitaev mapping has cost O(log N)



Quantum computing naturally relates to fermions

Bosons are harder (unlike in classical computing): need many
(strictly: infinitely many) qubits for a single boson.

Question: How many qubits do we need to compute a system
of A fermions on n single-particle states?

Al: n qubits
A2:1og,(’;) qubits

A3: both answers are correct and can lead to useful solutions



Al: n qubits

This is probably most natural: direct translation from
Hamiltonians to qubits, and spin-raising/lowering operators

“Second quantization” is the tool

Frontiers in computational nuclear structure:

— Ab initio calculations use up to n = 4000 single-particle states

— Shell model (exact diagonalization): pf(gy/,) shelln =~ 40 — 50 single-
particle states

OpenFermion python package
https://github.com/quantumlib/OpenFermion
arXiv:1710.07629



A2:1og, (")) qubits

Tremendous reduction in resource demands

But:

— complicated mapping from many-body states to qubit states

— number of matrix elements of the A-body Hamiltonian matrix scales
exponentially with A

Potentially attractive for Noisy Intermediate Scale Quantum
(NISQ) computing [NISQ: Preskill, arXiv:1801.00862]

Example: [Di Matteo, McCoy, Gysbers, Miyagi, Woloshyn, Navratil,
Phys. Rev. A 103, 042405 (2021), arXiv:2008.05012]



Let’s work through an example

PHYSICAL REVIEW LETTERS 120, 210501 (2018)
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We report a quantum simulation of the deuteron binding energy on quantum processors accessed via
cloud servers. We use a Hamiltonian from pionless effective field theory at leading order. We design a
low-depth version of the unitary coupled-cluster ansatz, use the variational quantum eigensolver algorithm,
and compute the binding energy to within a few percent. Our work is the first step towards scalable nuclear
structure computations on a quantum processor via the cloud, and it sheds light on how to map scientific
computing applications onto nascent quantum devices.



Example: “simplest deuteron” via quantum computing

1. Hamiltonian from pionless EFT at leading order; fit to deuteron binding energy; constructed in
harmonic-oscillator basis of 35, partial wave; cutoff at about 150 MeV.

N-1 / . 0 ¢n’
Hy= Y (T +V)mala, V=00
n,n'=0 Vo = —5.68658111 MeV

2. Map single-particle radial harmonic-oscillator states |n), n=0, 1, 2, ... onto qubits. This is an
analog of the Jordan-Wigner transform. Quantum computing convention: [T) = |0) and [l) = |1)

1 1 .
a;Ha(p)Ei(Xp—ti) apﬁaf)z§(Xp+zY}3)

h2k? 2 ar, B2 ory2 2 4
EN = — <1 . Q%G—lez . 4776—4kL> 4+ 8 <1 . Y Y + 2’(1)2!6/74) 6_4kL



Example: “simplest deuteron” via quantum computing

What is the deuteron?

Q: Particle content?

Q: Spin = ? Isospin =7

Q: State decomposed into partial waves as ?



Example: “simplest deuteron” via quantum computing

What is the deuteron?

Q: Bound state of a neutron and a proton
Q: Spin = ? Isospin =7

Q: State decomposed into partial waves as ?



Example: “simplest deuteron” via quantum computing

What is the deuteron?

Q: Bound state of a neutron and a proton
Q: Spin =1, Isospin =0

Q: State decomposed into partial waves as ?



Example: “simplest deuteron” via quantum computing

What is the deuteron?

Q: Bound state of a neutron and a proton

Q: Spin=1, Isospin=0

Q: [Y) = cosn (JL = 0)x|S = 1NHUD +sinn (|L = 2)x|S = 1))U=D

The d-wave admixture is small. So, we will model the s-wave only (and suppress the
trivial spin-isospin state).

This approximation is also consistent with pionless effective field theory at leading order.
Q: H =T + V.What is the potential?



Example: “simplest deuteron” via quantum computing

What is the deuteron?

Q: Bound state of a neutron and a proton
Q: Spin=1, Isospin=0

Q: [Y) = cosn (JL = 0)x|S = 1NHUD +sinn (|L = 2)x|S = 1))U=D

The d-wave admixture is small. So, we will model the s-wave only (and suppress the
trivial spin-isospin state).

This approximation is also consistent with pionless effective field theory at leading order.
Q: H =T + V.What is the potential?

AV = V06§3)(r) where 1, is a low-energy constant and a a finite range (inverse cutoff)

We will use spherical harmonic oscillator states as a basis, only need the radial
quantum numbern = 0,1,2, ... and we have states |n).



Example: “simplest deuteron” via quantum computing

Hamiltonian constructed in harmonic-oscillator basis of 35, partial wave:

N—-1
Hy= 3 (|(T+V)lnjal,a,
n,n’=0
) hw "
(W|T|n) = == | @n +3/2)8) = \/n(n +1/2)8;

-+ 1)(n+3/2)57]
(n'|VIn) = Vo5 .

hw =7 MeV  corresponds to a momentum cutoff of about 150 MeV

Vo = —5.68658111 MeV vyields the deuteron ground-state energy -2.22 MeV in
large model spaces (many basis states)



Mapping quantum states onto qubits

Q: How do we do map the basis states |n) withn = 0,1,2, ..., N — 1 onto qubits?
Al:

A2:



Mapping quantum states onto qubits

Q: How do we do map the basis states |n) withn = 0,1,2, ..., N — 1 onto qubits?

Al: binary mapping: |n = 0) = |0000...0),|n = 1) = |1000...0),
In = 2) =10100 ...0) etc. Then K qubits can hold 2X states.

A2:



Mapping quantum states onto qubits

Q: How do we do map the basis states |n) withn = 0,1,2, ..., N — 1 onto qubits?

Al: binary mapping: |n = 0) = |0000...0),|n = 1) = |1000...0),
In = 2) =10100 ...0) etc. Then K qubits can hold 2X states.

A2: “Second quantization” mapping |n = 0) = |1000...0),|n = 1) = [0100...0),
In = 2) = 10010 ...0) etc. Then K qubits can hold K states.

N-1
We will take A2. (Choice by taste, not substance) Hy = »  (n/|(T +V)[n)al, an

n,n’=0

We will limit ourselves to two qubits.



How to prepare the ground state?

Q: Given basis state |n) with n = 0,1 what is the most general state?
A:



How to prepare the ground state?

Q: Given basis state |n) with n = 0,1 what is the most general state?
A:cosf|n=0)+sinf|n=1)
Q: Why is this sufficient? Why not a full SU(2) transformation with three angles?

This is the circuit we used to achieve this:




State-preparation circuit on two qubits

1 2 4 _ 0 1
A> X [1 0
__[cos® —sinf
" v(e) = [sin 0 cos@
> Y(O) CNQT: flips the target qubit if and only if the control
) qubit is in state |1) = [{)

Q1: What is the state of the system after 1 ?
Q2: What is the state of the system after 2 ?
Q3: What is the state of the system after 3 ?
Q4: What is the state of the system after 4 ?



State-preparation circuit on two qubits

=[] ¢

__[cos® —sinf
v(e) = [sinH cos 6
CNQT: flips the target qubit if and only if the control
qubit is in state |1) = [{)

H—Y(9)

Al: [T)|T) = |TT). This is the vacuum: no deuteron.
Q2: What is the state of the system after 2 ?

Q3: What is the state of the system after 3 ?
Q4: What is the state of the system after 4 ?



State-preparation circuit on two qubits

=[] ¢

__[cos® —sinf
v(e) = [sinH cos 6
CNQT: flips the target qubit if and only if the control
qubit is in state |1) = [{)

H—Y(9)

Al: [T)|T) = |TT). This is the vacuum: no deuteron.

A2: [1)|T) = [IT). Now we have a deuteron in the state |n = 0).
Q3: What is the state of the system after 3 ?

Q4: What is the state of the system after 4 ?



State-preparation circuit on two qubits

=[] ¢

__[cos® —sinf
v(e) = [sinH cos 6
CNQT: flips the target qubit if and only if the control
qubit is in state |1) = [{)

H—Y(9)

Al: [T)|T) = |TT). This is the vacuum: no deuteron.
A2: [1)|T) = [IT). Now we have a deuteron in the state |n = 0).

Q3: [4)(|T) cos 8 + |1) sin 8). This is a superposition of one and two deuterons.
Q4: What is the state of the system after 4 ?



State-preparation circuit on two qubits

1 2 4 Y = [O 1
A ~ 1 0
> X ¥ Y (0) = [cos @ —sinf
A sinf cosf
>_|Y(9) CNQT: flips the target qubit if and only if the control
5 qubit is in state |1) = |[{)

Al: [T)|T) = |TT). This is the vacuum: no deuteron.
A2: [1)|T) = [IT). Now we have a deuteron in the state |n = 0).

Q3: [4)(|T) cos 8 + |1) sin 8). This is a superposition of one and two deuterons.
Q4: )| T) cos @ + [T)|{)sin 6. This is a deuteronin |[n = 0)cos 8 + |n = 1) sin 6.



<ﬂ2> (MeV)

Hamiltonian expectation value on two qubits
Hy = 5.9067091 + 0.218291Z) — 6.125Z; — 2.143304 (X0 X1 + YoY7)

Eﬁfa:ﬁil _

—— Theory

QX5

Quantum-classical hybrid algorithm VQE
[Peruzzo et al. 2014; McClean et al 2016]

Measure expectation values of individual

Pauli terms to measure energy on quantum
chip.

Expectation values on QPU. 8129
measurements (“shots”) taken for each
product of Pauli terms. Minimization on CPU.



Hamiltonian expectation value on two qubits
Hy = 5.9067097 + 0.218291 7y — 6.12571 — 2.143304 (Xo X1 + Yo Y1)

Q: What does one actually measure for ()| H,|y) on a quantum computer if the
state is |Y)?

Al: Duh, the result of a measurement is (Y |H, ).

A2: Wait, this is actually QM: The result is any eigenvalue E,, of H, and the
probability is given by the overlap |{y|¢,,)|* where |@,,) is the (unknown) exact
eigenstate of E,,. We need to make many measurements to get the expectation

value (and a single measurement gives us an eigenvalue E,)).

A3. Wait, this is even more complicated!



Hamiltonian expectation value on two qubits
Hy = 5.9067097 + 0.218291 7y — 6.12571 — 2.143304 (Xo X1 + Yo Y1)

Q: What does one actually measure for ()| H,|y) on a quantum computer if the
state is |Y)?

Al: Duh, the result of a measurement is (Y |H, ).

A2: Wait, this is actually QM: The result is any eigenvalue E,, of H, and the
probability is given by the overlap |{y|¢,,)|* where |@,,) is the (unknown) exact
eigenstate of E,,. We need to make many measurements to get the expectation
value (and a single measurement gives us an eigenvalue E,)).

A3. Wait, this is even more complicated! We can only measure the expectation
values of products of Pauli terms that make up the Hamiltonian. Each
measurement is a stochastic result. One then multiplies the measurement of
each product of Pauli terms with the coefficient that appears in the Hamiltonian
and sums up all expectation values to get the result.



Three qubits

Hy = Hy + 9625([ — ZQ)— 3.913119 (XlXQ -+ Y1Y2)

6 . 1.0
i

NH—y ™)
A> Y(6)—e

~

>
—e
=
=
(H3) (MeV)

Noise Parameter r

Three qubits have more noise. Add pairs of CNOT (unity operators) to extrapolate to zero noise. [See,
e.g., Ying Li & S. C. Benjamin 2017]



Final results

Deuteron ground-state energies from quantum computing compared to the exact E,, = —2.22 MeV.

E from exact diagonalization

N[ Ex |O(e TO)[O(kLe FT)[O(e 5
21—1.749 |[—2.39 —2.19
31—2.046 |—2.33 —2.20 —2.21

E from quantum computing
N| En (’)(e_%L) C’)(kLe_4kL) 0(6_4kL)

> [—1.74(3) | —2.38(4) |—2.13(3)
3 —2.08(3) —2.35(2) —2.21(3) —2.28(3)
Wk v _owr L g\ BPEY vyt 4\ —akL

[Dumitrescu, McCaskey, Hagen, Jansen, Morris, TP, Pooser, Dean, Lougovski, PRL 120, 210501 (2018)]



Snapshot

 Many researchers have explored how to compute ground and
excited states on quantum computers

— Variational quantum eigensolver (VQE)

* Needs efficient ansatz for variational wave function, e.g, via unitary coupled cluster
method

— Phase estimation
* More expensive than VQE; not as popular on NISQ machines

 Symmetry projection seems a natural candidate for qguantum
computing.
— Q: Why?
— A:

* Dynamics seems a natural candidate for guantum computing
— Q: Why?
— A:



Snapshot

 Many researchers have explored how to compute ground and
excited states on quantum computers

— Variational quantum eigensolver (VQE)

* Needs efficient ansatz for variational wave function, e.g, via unitary coupled cluster
method

— Phase estimation
* More expensive than VQE; not as popular on NISQ machines

 Symmetry projection seems a natural candidate for quantum
computing.
— Q: Why?
— A: symmetry projection uses unitary operators such as e~ 0y
 Dynamics seems a natural candidate for qguantum computing
— Q: Why?
— A: time evolution operator e "'*H s unitary (and hard to to classically)



Challenges in the NISQ era

1. Qubits are noisy:
 Onthe one hand, one wants to keep a fragile quantum system isolated.
* On the other hand, one wants to manipulate the system from the outside

2. Not all qubits are physically connected to all others; no 3D layouts for transmons
* Entangling distant qubits requires many intermediate steps

IBM 127 qubit quantum chip

Youngseok Kim, Nature (2023)

3. How to optimize quantum circuits?
4. How do you verify a result that you cannot simulate of any classical computer?



summary

* Exciting possibilities exploring and advancing quantum
computing in nuclear physics

— Dynamics, neutrino oscillations, ...

* Hardware is advancing rapidly but no logical/error-corrected
qubits yet

* Demand for Al/ML and QC/Ql workforce



