
Intro to Quantum Computing / Information

Work supported by the US Department of Energy

National Nuclear Physics Summer School
Bloomington, IN, July 15-26, 2024

Thomas Papenbrock, The University of Tennessee & Oak Ridge National Laboratory



Classical
Bits 0, 1 (False, True)

Irreversible logical operations

Universality: Any logical functions can be 
built from a small sets of gates.

Quantum
Qubits |0>, |1>

Reversible unitary operations

Universality: Any unitary transformation can 
be built from a small set of unitary 

operators.
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Classical vs Quantum Computing



• States on qubit are ↑ = 0   and  ↓ = 1

• Question: What is the most general state we can make from these basis states?

Single qubit operations



• States on qubit are ↑ = 0   and  ↓ = 1

• Question: What is the most general state we can make from these basis states?

• Answer:  states generated by SU(2) rotations, e.g. by the Wigner matrix 𝐷!"
!
" 𝛼, 𝛽, 𝛾  

𝑈 𝛼, 𝛽, 𝛾 = 𝑒#$
%
&'#𝑒#$

(
&'$𝑒#$

)
&'# =

𝑒#$
%
& cos

𝛽
2
𝑒#$

)
& −𝑒#$

%
& sin

𝛽
2
𝑒$
)
&

𝑒$
%
& sin

𝛽
2 𝑒

#$)& 𝑒$
%
& cos

𝛽
2 𝑒

$)&

Single qubit operations



Single qubit operations cont’d
• States on qubit are ↑ = 0   and  ↓ = 1

• Consider Pauli matrices 𝑋 ≡ 𝜎! =
0 1
1 0 , 𝑌 ≡ 𝜎" =

0 −𝑖
𝑖 0 , and  𝑍 ≡ 𝜎# =

1 0
0 −1

• Question: What are the relevant properties of Pauli matrices?

• A1: Pauli matrices are Hermitian

• A2: Pauli matrices are unitary

• A3: All of the above 



Single qubit operations cont’d
• States on qubit are ↑ = 0   and  ↓ = 1

• Consider Pauli matrices 𝑋 ≡ 𝜎! =
0 1
1 0 , 𝑌 ≡ 𝜎" =

0 −𝑖
𝑖 0 , and  𝑍 ≡ 𝜎# =

1 0
0 −1

• Question: What are the relevant properties of Pauli matrices?

• A1: Pauli matrices are Hermitian

• A2: Pauli matrices are unitary

• A3: All of the above 

Thus, the Pauli matrices and exponentials 𝑒$%&, 𝑒$%', and 𝑒$%( are all unitary operators 



Two qubit operation: CNOT

Target qubit

Control qubit

Q: How does the CNOT gate work (look at the table)?

Image credits: wikipedia



Two qubit operation: CNOT

Target qubit

Control qubit

Q: How does the CNOT gate work (look at the table)?
A: The CNOT gate flips the target qubit if and only if the control qubit is in state |1⟩.

Any unitary operation on 𝑁 qubits can be realized as a product of single-qubit unitary operations 
and CNOT operations. The CNOT entangles states of two qubits.

Image credits: wikipedia



Storing and processing information

• Computing frontier: The memory on Frontier’s compute nodes 
can store about 10 Peta Byte ≈ 2!" bit of information

• Question: How many qubits does one need to store this 
amount of information? 



Storing and processing information

• Computing frontier: The memory on Frontier’s compute nodes 
can store about 10 Peta Byte ≈ 2!" bit of information

• Answer: 56 error corrected qubits
 Thus it seems that quantum computers could revolutionize     

storage and processing of information

… drum roll



Quantum Supremacy

Google claim: 10,000 years on Summit
IBM: 2.5 days on Summit (October 2019)



Quantum Advantage

Quantum chemistry: coupled-cluster 
methods scale polynomially. Will be hard 
to beat.

“While quantum computers may still prove 
useful for ground-state quantum chemistry 
through polynomial speedups, it may be 
prudent to assume exponential speedups 
are not generically available for this 
problem.”

arXiv:2208.02199



Quantum Utility

Quantum computers will probably be around in the future
1. Let us find out how they could be used in nuclear (structure) 

theory
2. Let us find out how ideas from quantum information might be 

useful in nuclear theory



Quantum computing summary

• Only unitary transformations are allowed
– these are reversible
– No information is lost

• Measurements (i.e. projections of states onto the 
computational basis states ↑ = 0   and  ↓ = 1 ) at the end 
of a computation are irreversible

• So quantum computing means:
– transform a sequence of unitary operations on qubits
– make a measurement at the end



Quantum Circuits

U

Qubits are initially in 0

𝑞)

𝑞*

Single-qubit unitary 𝑈 
acts on 𝑞).

Two-qubit unitary CNOT acts on 𝑞) and 𝑞*. 
Creates entangled quantum states. 

Measurements on each 
qubit yields results 𝑧*,,.

time
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Mapping fermions to qubits

• States on qubit 𝑞 are   ↑ # = 0 #    and    ↓ # = 1 #

• Reminds us of fermion states 1 # = )𝑎#$ 0 #

• Note: lowering the spin of state 0 	generates the “occupied” 
state 1 , thus spin lowering and fermion creation are related 
(and spin raising and fermion annihilation)



Mapping of operators

• Spin raising / lowering operator 𝜎± =
"
#
𝜎$ ± 𝑖𝜎% =

0 1
0 0
0 0
1 0

	

• Notation: 𝜎$
(') ± 𝑖𝜎%

(') ≡ 𝑋' ± 𝑖𝑌'

• Thus, we have    "
#
(𝑋' − 𝑖𝑌')|0⟩ = |1⟩   and    "

#
(𝑋' + 𝑖𝑌')|1⟩ = |0⟩ 

• Question:  How do we implement 1𝑎') using spin operators?

    Hint: need 3 1𝑎* , 51𝑎') = 𝛿*' and 3 1𝑎*) , 51𝑎') = 0



Mapping of operators

• Spin raising / lowering operator 𝜎± =
"
#
𝜎$ ± 𝑖𝜎% =

0 1
0 0
0 0
1 0

	

• Notation: 𝜎$
(') ± 𝑖𝜎%

(') ≡ 𝑋' ± 𝑖𝑌'

• Thus, we have   "
#
(𝑋' − 𝑖𝑌')|0⟩ = |1⟩   and    "

#
(𝑋' + 𝑖𝑌')|1⟩ = |0⟩ 

• Answer:  1𝑎') =
"
#
∏+,-
'." −𝑍+ (𝑋' − 𝑖𝑌')      

    Thus the convention is 1𝑎-) 1𝑎")⋯ 1𝑎/.") 0 = |1,1,⋯ , 1⟩.
• Note the cost of this Jordan-Wigner mapping is 𝑂(𝑁)	for 𝑁 qubits; 

Bravyi-Kitaev mapping has cost 𝑂 log	𝑁

𝑞 = 0, 1,⋯ , 𝑘 − 1



Quantum computing naturally relates to fermions

• Bosons are harder (unlike in classical computing): need many 
(strictly: infinitely many) qubits for a single boson.

• Question: How many qubits do we need to compute a system 
of 𝐴 fermions on 𝑛 single-particle states?

• A1: 𝑛 qubits

• A2: log%
&
'  qubits

• A3: both answers are correct and can lead to useful solutions



A1: 𝑛 qubits

• This is probably most natural: direct translation from 
Hamiltonians to qubits, and spin-raising/lowering operators

• “Second quantization” is the tool
• Frontiers in computational nuclear structure: 
– Ab initio calculations use up to 𝑛 ≈ 4000 single-particle states
– Shell model (exact diagonalization): pf(g9/2) shell 𝑛 ≈ 40 − 50 single-

particle states 
• OpenFermion python package 

https://github.com/quantumlib/OpenFermion 
arXiv:1710.07629



A2: log1 2
3  qubits

• Tremendous reduction in resource demands
• But: 
– complicated mapping from many-body states to qubit states
– number of matrix elements of the 𝐴-body Hamiltonian matrix scales 

exponentially with 𝐴
• Potentially attractive for Noisy Intermediate Scale Quantum 

(NISQ) computing [NISQ: Preskill, arXiv:1801.00862]
• Example: [Di Matteo, McCoy, Gysbers, Miyagi, Woloshyn, Navratil, 

Phys. Rev. A 103, 042405 (2021), arXiv:2008.05012]



Let’s work through an example



1. Hamiltonian from pionless EFT at leading order; fit to deuteron binding energy; constructed in 
harmonic-oscillator basis of 3S1 partial wave; cutoff at about 150 MeV.

2. Map single-particle radial harmonic-oscillator states |n⟩, n=0, 1, 2, … onto qubits. This is an 
analog of the Jordan-Wigner transform. Quantum computing convention: ↑ = |0⟩ and ↓ = |1⟩ 

3. Solve H1, H2 (and H3) and extrapolate to infinite space using harmonic oscillator variant of 
Lüscher’s formula [More, Furnstahl, TP (2013)]

Example: “simplest deuteron” via quantum computing



What is the deuteron?
Q: Particle content? 
Q: Spin = ? Isospin = ?
Q: State decomposed into partial waves as ?  

Example: “simplest deuteron” via quantum computing



What is the deuteron?
Q: Bound state of a neutron and a proton
Q: Spin = ? Isospin = ?
Q: State decomposed into partial waves as ?  

Example: “simplest deuteron” via quantum computing



What is the deuteron?
Q: Bound state of a neutron and a proton
Q: Spin = 1, Isospin = 0
Q: State decomposed into partial waves as ?  

Example: “simplest deuteron” via quantum computing



What is the deuteron?
Q: Bound state of a neutron and a proton
Q: Spin = 1, Isospin = 0
Q: 𝜓 = cos 𝜂 𝐿 = 0 × 𝑆 = 1 )(56*) + sin 𝜂 𝐿 = 2 × 𝑆 = 1 )(56*) 

Example: “simplest deuteron” via quantum computing

The d-wave admixture is small. So, we will model the s-wave only (and suppress the 
trivial spin-isospin state).  

This approximation is also consistent with pionless effective field theory at leading order.
Q: 𝐻 = 𝑇 + 𝑉. What is the potential?



What is the deuteron?
Q: Bound state of a neutron and a proton
Q: Spin = 1, Isospin = 0
Q: 𝜓 = cos 𝜂 𝐿 = 0 × 𝑆 = 1 )(56*) + sin 𝜂 𝐿 = 2 × 𝑆 = 1 )(56*) 

Example: “simplest deuteron” via quantum computing

The d-wave admixture is small. So, we will model the s-wave only (and suppress the 
trivial spin-isospin state).  

This approximation is also consistent with pionless effective field theory at leading order.
Q: 𝐻 = 𝑇 + 𝑉. What is the potential?
A: 𝑉 = 𝑉)𝛿8

(9) 𝑟  where 𝑉) is a low-energy constant and 𝑎 a finite range (inverse cutoff)

We will use spherical harmonic oscillator states as a basis, only need the radial 
quantum number 𝑛 = 0,1,2, … and we have states |𝑛⟩. 



Hamiltonian constructed in harmonic-oscillator basis of 3S1 partial wave:

Example: “simplest deuteron” via quantum computing

corresponds to a momentum cutoff of about 150 MeV

yields the deuteron ground-state energy -2.22 MeV in 
large model spaces (many basis states)



Mapping quantum states onto qubits
Q: How do we do map the basis states |𝑛⟩ with 𝑛 = 0,1,2, … ,𝑁 − 1 onto qubits?

A1:

A2: 



Mapping quantum states onto qubits
Q: How do we do map the basis states |𝑛⟩ with 𝑛 = 0,1,2, … ,𝑁 − 1 onto qubits?

A1: binary mapping: 𝑛 = 0 = 0000…0 , 𝑛 = 1 = 1000…0 ,
𝑛 = 2 = 0100…0  etc. Then 𝐾 qubits can hold 2: states.

A2:



Mapping quantum states onto qubits
Q: How do we do map the basis states |𝑛⟩ with 𝑛 = 0,1,2, … ,𝑁 − 1 onto qubits?

A1: binary mapping: 𝑛 = 0 = 0000…0 , 𝑛 = 1 = 1000…0 ,
𝑛 = 2 = 0100…0  etc. Then 𝐾 qubits can hold 2: states.

A2: “Second quantization” mapping 𝑛 = 0 = 1000…0 , 𝑛 = 1 = 0100…0 ,
𝑛 = 2 = 0010…0  etc. Then 𝐾 qubits can hold 𝐾 states. 

We will take A2. (Choice by taste, not substance)

We will limit ourselves to two qubits.  



How to prepare the ground state?
Q: Given basis state |𝑛⟩ with 𝑛 = 0,1 what is the most general state? 
A: 



How to prepare the ground state?
Q: Given basis state |𝑛⟩ with 𝑛 = 0,1 what is the most general state? 
A: cos 𝜃 𝑛 = 0 + sin 𝜃 |𝑛 = 1⟩
Q: Why is this sufficient? Why not a full SU(2) transformation with three angles?

This is the circuit we used to achieve this:



State-preparation circuit on two qubits

1 2

3

4

Q1: What is the state of the system after 1 ?

Q2: What is the state of the system after 2 ?

Q3: What is the state of the system after 3 ?

Q4: What is the state of the system after 4 ?

𝑋 = 0 1
1 0

𝑌 𝜃 = cos 𝜃 −sin 𝜃
sin 𝜃 cos 𝜃

CNOT: flips the target qubit if and only if the control 
qubit is in state 1 = ↓



State-preparation circuit on two qubits

1 2

3

4

A1: ↑ ↑ = ↑↑ . This is the vacuum: no deuteron. 

Q2: What is the state of the system after 2 ?

Q3: What is the state of the system after 3 ?

Q4: What is the state of the system after 4 ?

𝑋 = 0 1
1 0

𝑌 𝜃 = cos 𝜃 −sin 𝜃
sin 𝜃 cos 𝜃

CNOT: flips the target qubit if and only if the control 
qubit is in state 1 = ↓



State-preparation circuit on two qubits

1 2

3

4

A1: ↑ ↑ = ↑↑ . This is the vacuum: no deuteron.

A2: ↓ ↑ = ↓↑ . Now we have a deuteron in the state |𝑛 = 0⟩.

Q3: What is the state of the system after 3 ?

Q4: What is the state of the system after 4 ?

𝑋 = 0 1
1 0

𝑌 𝜃 = cos 𝜃 −sin 𝜃
sin 𝜃 cos 𝜃

CNOT: flips the target qubit if and only if the control 
qubit is in state 1 = ↓



State-preparation circuit on two qubits

1 2

3

4

A1: ↑ ↑ = ↑↑ . This is the vacuum: no deuteron.

A2: ↓ ↑ = ↓↑ . Now we have a deuteron in the state |𝑛 = 0⟩.

Q3: ↓ ( ↑ cos 𝜃 + ↓ sin 𝜃). This is a superposition of one and two deuterons.

Q4: What is the state of the system after 4 ?

𝑋 = 0 1
1 0

𝑌 𝜃 = cos 𝜃 −sin 𝜃
sin 𝜃 cos 𝜃

CNOT: flips the target qubit if and only if the control 
qubit is in state 1 = ↓



State-preparation circuit on two qubits

1 2

3

4

A1: ↑ ↑ = ↑↑ . This is the vacuum: no deuteron.

A2: ↓ ↑ = ↓↑ . Now we have a deuteron in the state |𝑛 = 0⟩.

Q3: ↓ ( ↑ cos 𝜃 + ↓ sin 𝜃). This is a superposition of one and two deuterons.

Q4: ↓ ↑ cos 𝜃 + ↑ ↓ sin	𝜃. This is a deuteron in n = 0 cos 𝜃 + n = 1 sin 𝜃.

𝑋 = 0 1
1 0

𝑌 𝜃 = cos 𝜃 −sin 𝜃
sin 𝜃 cos 𝜃

CNOT: flips the target qubit if and only if the control 
qubit is in state 1 = ↓



Hamiltonian expectation value on two qubits

Quantum-classical hybrid algorithm VQE 
[Peruzzo et al. 2014; McClean et al 2016]

Measure expectation values of individual 
Pauli terms to measure energy on quantum 
chip. 

Expectation values on QPU. 8129 
measurements (“shots”) taken for each 
product of Pauli terms. Minimization on CPU. 



Hamiltonian expectation value on two qubits

Q: What does one actually measure for ⟨𝜓 𝐻& 𝜓⟩ on a quantum computer if the 
state is |𝜓⟩?
A1: Duh, the result of a measurement is ⟨𝜓 𝐻& 𝜓⟩.
A2: Wait, this is actually QM: The result is any eigenvalue 𝐸* of 𝐻& and the 
probability is given by the overlap 𝜓 𝜙* & where |𝜙*⟩ is the (unknown) exact 
eigenstate of 𝐸*. We need to make many measurements to get the expectation 
value (and a single measurement gives us an eigenvalue 𝐸*).

A3. Wait, this is even more complicated! 



Hamiltonian expectation value on two qubits

Q: What does one actually measure for ⟨𝜓 𝐻& 𝜓⟩ on a quantum computer if the 
state is |𝜓⟩?
A1: Duh, the result of a measurement is ⟨𝜓 𝐻& 𝜓⟩.
A2: Wait, this is actually QM: The result is any eigenvalue 𝐸* of 𝐻& and the 
probability is given by the overlap 𝜓 𝜙* & where |𝜙*⟩ is the (unknown) exact 
eigenstate of 𝐸*. We need to make many measurements to get the expectation 
value (and a single measurement gives us an eigenvalue 𝐸*).

A3. Wait, this is even more complicated! We can only measure the expectation 
values of products of Pauli terms that make up the Hamiltonian. Each 
measurement is a stochastic result. One then multiplies the measurement of 
each product of Pauli terms with the coefficient that appears in the Hamiltonian 
and sums up all expectation values to get the result.



Three qubits

Three qubits have more noise. Add pairs of CNOT (unity operators) to extrapolate to zero noise. [See, 
e.g., Ying Li & S. C. Benjamin 2017]



Final results
Deuteron ground-state energies from quantum computing compared to the exact 𝐸% = −2.22 MeV. 

[Dumitrescu, McCaskey, Hagen, Jansen, Morris, TP, Pooser, Dean, Lougovski, PRL 120, 210501 (2018)]



Snapshot
• Many researchers have explored how to compute ground and 

excited states on quantum computers
– Variational quantum eigensolver (VQE)

• Needs efficient ansatz for variational wave function, e.g, via unitary coupled cluster 
method  

– Phase estimation 
• More expensive than VQE; not as popular on NISQ machines

• Symmetry projection seems a natural candidate for quantum 
computing. 
– Q: Why?  
– A: 

• Dynamics seems a natural candidate for quantum computing
– Q: Why?
– A: 



Snapshot
• Many researchers have explored how to compute ground and 

excited states on quantum computers
– Variational quantum eigensolver (VQE)

• Needs efficient ansatz for variational wave function, e.g, via unitary coupled cluster 
method  

– Phase estimation 
• More expensive than VQE; not as popular on NISQ machines

• Symmetry projection seems a natural candidate for quantum 
computing. 
– Q: Why?  
– A: symmetry projection uses unitary operators such as 𝑒#$+,$

• Dynamics seems a natural candidate for quantum computing
– Q: Why?
– A: time evolution operator 𝑒#$-. is unitary (and hard to to classically)



Challenges in the NISQ era
1. Qubits are noisy: 
• On the one hand, one wants to keep a fragile quantum system isolated.
• On the other hand, one wants to manipulate the system from the outside

2. Not all qubits are physically connected to all others; no 3D layouts for transmons
• Entangling distant qubits requires many intermediate steps

3. How to optimize quantum circuits?
4. How do you verify a result that you cannot simulate of any classical computer?
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IBM 127 qubit quantum chip



Summary

• Exciting possibilities exploring and advancing quantum 
computing in nuclear physics  
– Dynamics, neutrino oscillations, …

• Hardware is advancing rapidly but no logical/error-corrected  
qubits yet

• Demand for AI/ML and QC/QI workforce


