

Compact Pulsed Hadron Source

CPHS

Science & Technology of University-Based, Accelerator-driven, Compact Neutron & Proton Sources: A Case in Point for China (II)

Chun LOONG and Jie WEI Tsinghua University, Beijing

The Inaugural Workshop UCANS-I, Beijing, 2010-8-16 to 2010-8-18

UCANS-I

Compact Pulsed Hadron Source

(II): The Proton Side

Chun LOONG and Jie WEI Tsinghua University, Beijing

The Inaugural Workshop UCANS-I, Beijing, 2010-8-16 to 2010-8-18

Compact

- State-of-the-art accelerator technology

Extendable

 Relates to major directions of hadron accelerator developments worldwide

On a fast-track

- Training of students & staff
- Grow of domestic technology
- In-time to support the development of major projects in China

Tsinghua University Compact Pulsed Hadron Source

Table 1: Primary parameters of CPHS		
Proton power on target	16	kW
Proton energy	13	MeV
Average beam current	1.25	mA
Pulse repetition rate	50	Hz
Protons per pulse	$1.56 \mathrm{x} 10^{14}$	Protons
Pulse length	0.5	ms
Peak beam current	50	mA
Target material	Be	
Moderator type	H ₂ O (300K),	
	CH4 (20K)	

Cost at \$12M; funded \$3M
3 year for phase I

■ECR source ■RFQ ■RF(325 MHz) Be target SANS Imaging Irradiation

The RFQ example

- > 4-vane technology for high intensity, high duty proton beams
- ➤ 3 MeV acceleration in about 3 m length
- ➤ 325 MHz (expected to be operated at the 4th harmonic of 1.3 GHz)
- Cavity cross section and vane-tip geometry are tailored as a function of longitudinal position
- ➤ No MEBT between the RFQ and DTL
- > No coupling plate between the sections

CPHS

Injects into DTL with permanent magnet quadrupole magnets (compact)

Design parameters versus longitudinal position

Major accelerator & neutron facility in China

KIE

PAKIST

Compact sources

- Neutron imaging facility / Beijing University
- TTX Tsinghua Thompson scattering light source
- CPHS p/n source / Tsinghua university, Beijing

- Multi-disciplinary user neutron source
- Ion (proton/carbon) beam therapy & BNCT
- ADS for nuclear waste (minor actinides and long-lived fission-products) transmutation and for alternative fuel (Thorium, U²³⁸) utilization
- Rare isotope beam (RIA) facility
- Compact neutron and proton sources

- Proton and/or carbon beam facilities
- Driven by synchrotron accelerators
- Shanghai Proton Heavy-ion Hospital
 - A \$330M investment by Shanghai municipal government; contract with Siemens for equipment
- Gansu province contract signed
 - A \$150M contract by a private investor
 - Domestic developments by IMP / Lanzhou
- Guangdong province
 - A \$120M facility commitment with IMP / Lanzhou

- By 2020, addition of nuclear power of 40 GWe, by 2050 reaching 240 GWe. 25 tons of waste per 1 GWe reactor plant.
- Transmutation of MA and LLFP material.
- CAS planning a joint ADS/RIA center at Inner Mongolia with a budget of near \$1B
- A possible collaboration of several institutes
 - Linear accelerator
 - Neutron target
 - Sub-critical reactor assembly
 - Partitioning

Summary

CPHS is on track to fulfill its preset goals

X.F. Xie Y.L.Zhao

Thank you!

SELF-DISCIPLINE AND SOCIAL COMMITMENT