Compact Neutron Instrumentations and Optical Devices at Compact Sources

Michihiro Furusaka

In preparation...

Graduate School of Engineering, Hokkaido University

Compact Neutron Instrumentations and Optical Devices at Compact Sources

Michihiro Furusaka

Graduate School of Engineering, Hokkaido University

What is it?

3

Hokkaido University Electron linac based neutron source facility

Typical example of a compact accelerator driven neutron source.

45MeV Electron Linac @Hokkaido University

- The first generation compact pulsed neutron source
 - First beam ≈1973
 - still running...
- 35 MeV, 30 μA, 50 pps

Accelerator sections

Pb-Target, solid methane cold moderator @17K

45MeV Electron Linac @Hokkaido University

- The first generation compact pulsed neutron source
 - First beam ≈1973
 - still running...
- 35 MeV, 30 μA, 50 pps

Accelerator sections

Time averaged intensity

Compact neutron source should NOT be a compact "large facility".

If you move instruments from a large facility, you end-up with poor performance.

Compact neutron source should NOT be a compact "large facility".

If you move instruments from a large facility, you end-up with poor performance.

What we need is an extreme optimization; beyond our imagination limits.

Today's menu

- Two of our goals:
 - protein solution SANS
 - Nanoscopic precipitations in steel
 - Requirements to the instrument.
- Various SANS instruments and others
 - Conventional SANS instrument
 - Small-pinhole SANS
 - Compact focusing SANS instruments
- Intermediate-angle neutron scattering instrument
 - Powder diffraction test.

Let me talk about Our goal first...

UCH-L1: Parkinson's disease related protein

- Proteins deform and aggregate in solution
 - Related to functionality
- SANS solution study should be a powerful technique
 - Not fully exploited yet.

UCH-L1: Parkinson's disease related protein

Protein systems related to brain disease

- UCH-L1(ubiquitine carboxy-terminal hydlorase L1)
 - Found in Lewy body
 - Related to proteasome system (removes garbage proteins)
- Tau:
 - Microtubline bound protein
 - Abnormal aggregation (tauopacy)
- **α-synuclein**:
 - Parkinson's disease
 - Abnormal aggregation

S. Naito (KEK)

Access to an intermediate-q range is crucial

- q_{max} ≤ 0.5 (~2) A⁻¹
- Very high-intensity
 modest Q resolution
- Lowest-Q requirement
 - modest ≈0.02-0.03 A⁻¹
 - Relatively high intensity
- Lower-Q measurement is preferable
 - Lowest-Q ≈ several ×10⁻³ A⁻¹
 - or lower

 $q_{max} \le 0.5 (\sim 2) A^{-1}$

Masato Ohuma, National Institute for Materials Science, NIMS

Nanoscopic precipitates in Steel

Conventional SANS instruments are large

Neutron SAS instruments

- Lowest-Q measurement: OK.
- Intermediate-angle scattering: questionable.

SANS-U@JRR-3

New D11 @ ILL http://www.ill.eu/instrumentssupport/instruments-groups/ instruments/d11/news-from-d11/

SANS instruments are large

Why not use a smaller pin-hole...

Low-q scattering is usually very intense.

Small Pin-hole Time-of-flight SANS

- Sample size ≈ 2 mm ø
 - flight paths only 1.5m
 - no vacuum tube
- Poor intensity ≈ 1/25???

Resistive wire type PMT +ZnS scintillator

- Li (n, α); ZnS(Ag) scintillation
- **3inch**, **5inch PMT**
 - R2486-04
- Good resolution
 - <1mm

Hirota, Satoh et al. (RIKEN, KEK, NOP)

Other detectors almost

online:

GEM, MSGC, MPGC

2 mmø sample compact SANS instrument at Hokkaido University

Very clean direct beam!

- Hokkaido Univ. small pin-hole SANS, 2 mmø
 - Cd plate drilled with Boric acid

Scanning TOF SANS; 2mmø at Hokkaido University

0.2 mmø pin-hole SANS???

• Can you imagine 0.2 mmø pin-hole SANS instrument?

Using a focusing device

Same Q-range, Q-resolution; Very short flight-path.

Focusing SANS instrument is Compact!

Focusing SANS instrument is Compact! Sample size is ■ Focusing = compact nsity independent of the Virtual Lens/mirror q-resolution. Source Sample Intensity: **Detector** $I \propto \phi \cdot d\Omega_i \cdot \frac{d\Sigma}{d\Omega} \cdot V_{sample} \cdot \eta \cdot d\Omega_f$ × d Conventional point collimation **Detector** Sample D

Focusing SANS instrument is Compact! Sample size is Focusing nsity ≈ compact independent of the Virtual Lens/mirror q-resolution. Source Sample intensity: **Reduce the pin-hole size Detector** to get very low q-resolution. f**K**d Conventional point collimation **Detector** Sample

Π

Focusing SANS

- - Toroidal mirror focusing to extend low-Q limit.
 - Moved from Jülich to München
 - Q=4×10⁻⁴A⁻¹

- Fig. 1. Toroidal mirror with the image in the detector plane. B. Alefeld et al./ Physica B 234-236 (1997) 1052-1054
- MgO₂ lens, sextupole lens are available.

A compact focusing SANS at Hokkaido Univ.

A compact focusing SANS at Hokkaido Univ.

Bovine thighbone, cross section SANS preliminary analysis

Mini-focusing SANS instrument @JRR-3

mfSANS@JRR-3

Prototype focusing SANS@JRR-3

- Ellipsoidal mirror
 - 2.5 Q_c supermirror
 - 2.5 m between focal points
 - short radius 20 mm

L: 900mm W: 20mm

Si perfect crystal monochromator

- Fully asymmetric geometry
 - 5.8 A
 - 0.5 mm thick Si plates×30 plates
 - Brighter than a PG monochromator

0.5 mm thick Si plates ×30 plates

Ni powder 20nm Preliminary data

• $Q_{min} = 5 \times 10^{-3} \text{ A}^{-1}$ using 2mmø aperture.

wider-angle scattering Preliminary data

- 48 Linear position sensitive detectors at higher angle
 - 1/2 inch dia, 600 mm in length
 - GE made

I(q) Water

Other method of focusing: bent supermirror

Should be easy and cost effective.

Focusing by a bent supermirror

- Very gentle bending
 - Elliptical bending, ≈120µm at the ends

Focusing by a bent supermirror For reflectometer

39

- Very gentle bending
- & K-B mirror type SANS • Elliptical bending, $\approx 120 \mu m$ at the ends

Two pieces of supermirrors replacing a guide

For neutron reflection measurement for horizontal sample geometry.

beamline for the reflectometer @J-PARC

- Horizontal sample geometry
 - Inclined beamline+TOF

No need of moving sample height

First test at HU Linac

Intermediate-angle scattering instrument; using a very short flight-path

Intermediate-angle scattering instrument

- Very low angular resolution
 =highly efficient at an intermediate-q range
- Large sample size; up to 20 mm
- Reasonable Q-range; $0.05 \le Q \le 2 A^{-1}$

Intermediate-angle scattering instrument

Nanoscopic precipitates in Steel

Diffractometer

Very low resolution

Summary

- 49
- HU Linac is a good example of cADNS in a university environment.
- Various SANS instruments and others
 - Conventional SANS instrument
 - Small-pinhole SANS
 - Compact focusing SANS instruments
- Intermediate-angle neutron scattering instrument
 - Powder diffraction test.
- Various optical device development
 - focusing devices
 - monochromators