2010-08-16

Neutronic Design on a Small Accelerator based ⁷Li (p, n) Neutron Source for Neutron Scattering Experiments

Fujio Hiraga, Takanori Okazaki and Yoshiaki Kiyanagi Hokkaido University

Technical background

- Small accelerator neutron sources with an intensity more than 10¹² s⁻¹ are necessary to facilitate the application of cold neutron scattering experiments such as transmission measurements and small angle neutron scattering.
- A small proton linear accelerator with the proton energy of 2.5MeV has been put to practical use.
- The neutron intensity of 10¹² s⁻¹ is expected to be produced by a Li target and the small proton linear accelerator with the beam current of 1mA.

Neutronic advantages of the ⁷Li(p, n) source using 2.5 MeV protons

- The larger yield of neutrons than other methods with low energy protons around 3MeV.
- The smaller energies of neutrons (less than <u>800keV</u>) than the evaporation neutrons.
- <u>Higher efficiency for the neutron moderation at the</u> ⁷Li source than a Bremsstrahlung (γ , n) source, and
- <u>The decrease of the volume of the shield for neutrons</u> around the source

are expected.

The aim of this research

• <u>Examining the performance of models for the⁷Li (p, n) cold</u> <u>neutron source.</u>

• We study <u>the neutronic performance</u> using practical models where the neutron absorption in the structure materials and the neutron streaming in the channels around the moderator were taken into account,

and make <u>comparison</u> of the performance with two different neutron production methods, ${}^{9}Be(p, n)$ and Bremsstrahlung (γ , n).

• We next designed the shielding components for neutrons and γ - rays to reduce the volume and the weight of the shield around the source.

Part -1

The study on the neutronic performance, comparison of efficiency of neutron moderation among three neutron production methods

Longitudinal section of the calculation model of the S-type cold neutron source

Cross section of the calculation model of the L-type cold neutron source

Detailed structure around the moderator for the L-type source

- The Li target: Li foil (t0.01) is installed on Cu can (t0.5).
- •We also examined the cases where <u>the Li foil was replaced by the</u> Be foil (${}^{9}Be(p, n)$) or the tungsten foil (Bremsstrahlung (γ , n)).⁸

Details of the L-type source

Longitudinal section

Cross section

Neutron energy spectra <u>per produced</u> <u>neutron</u> from various targets

Neutron angular distribution <u>per</u> <u>produced neutron</u> from various targets

Optimal dimensions of the moderator, premoderator and reflector for various cases of cold neutron sources

The dimensions shown below were found by parametrical calculations so that the intensity of cold neutrons (E < 5meV) is maximized.

Type of source		The moderator thickness [cm]	The pre-moderator thickness [cm]	The reflector thickness [cm]
⁷ Li(p, n), $E_p = \underline{2MeV}$	S-type	2.5	1.5	40
	L-type	3.0	1.0	50
$^{7}\text{Li}(p, n), E_{p} = \frac{2.5\text{MeV}}{2.5\text{MeV}}$	S-type	2.5	1.5	40
	L-type	3.0	1.0	50
${}^{9}\text{Be}(p, n), E_{p} = \underline{11MeV}$	S-type	2.5	1.5	50
	L-type	2.5	1.0	50
Bremsstrahlung (γ , n), E _e = <u>35MeV</u>	S-type	2.5	1.0	50
	L-type	2.5	1.0	60 12

Comparison of neutron spectra <u>per produced neutron</u> between the S- and the L-type ⁷Li sources driven by 2.5MeV protons

Comparison of neutron spectra <u>per produced neutron</u> between the ⁷Li and the Bremsstrahlung sources

Fast neutron yield from the target, the average energy of neutrons from the target and the cold neutron flux <u>per produced neutron</u> for the L-type sources with various reactions

Type of source	The fast neutron yield from the target [1/s/mA]	The average energy of neutrons from the target [MeV]	The cold neutron flux [1/cm²/n _f]
⁷ Li(p, n), $E_p = \underline{2MeV}$	1.10×10^{11}	0.075	3.02×10^{-8}
⁷ Li(p, n), $E_p = \underline{2.5MeV}$	8.80×10^{11}	0.326	2.66×10^{-8}
9 Be(p, n), E _p = <u>11MeV</u>	2.15×10^{13}	2.04	2.07×10^{-8}
Bremsstrahlung (γ , n), $E_e = 35MeV$	5.60×10^{13}	2.52	1.92 × 10 ⁻⁸

The calculation results show that

- <u>The ⁷Li source of 2.5KW ($E_p=2.5MeV, I=1mA$)</u> produces the intensity of cold neutrons of 2.34 × 10⁴ [1/cm²/s] at 5 m from the moderator, which corresponds to a typical <u>Bremsstrahlung source of</u> <u>0.77KW ($E_e=35MeV, I=0.022mA$)</u>.
- Higher efficiency for neutron moderation <u>per beam</u> <u>power of the accelerator</u> is obtained <u>not by the ⁷Li</u> <u>source but by the Bremsstrahlung source</u>; however, we have to study the shielding components around the source to achieve a compact neutron source.

Part-2

The design of the shielding components, comparison of the volume of the shield between the ⁷Li source and the Bremsstrahlung source

The aim of designing the shielding components

• The reduction of the total surface dose of photons and neutrons on the shielding components <u>down</u> to $20 \mu Sv/h$,

since a 2.5 MeV proton linear accelerator having the surface radiation dose of less than $20 \,\mu Sv/h$ on the shielding components is permitted to be used anywhere by the regulation in Japan.

Radiation sources used for the design of the shielding components

<u>⁷Li(p, n) of 2.5KW</u> ($E_p = 2.5MeV, I = 1mA$) Fast neutron yield: $8.8 \times 10^{11} \text{ s}^{-1}$, estimated by LIYIELD.

Reactions of photon production	7 Li (p, n γ) 7 Be	⁷ Li (p, p γ) ⁷ Li	⁷ Li (p, $\alpha \gamma$) ⁴ He
Energy of photons [MeV]	<u>0.429</u>	<u>0.478</u>	<u>14</u>
Photon yield at the target [1/s]	4.1×10^{10}	2.1×10^{11}	5.7×10^{6}

†: C.L. Lee, X.-L. Zhou, 1999,
† † : A. Z. KISS et al, 1984, ☆ : C. L. LEE et al, 2000.

<u>The Bremsstrahlung (γ , n) of 0.77KW</u> (E_e=35MeV, I = 0.022mA) Fast neutron yield: 1.23×10^{12} s⁻¹ (<u>1.4 times larger</u> than ⁷Li(p, n) of 2.5KW), Photon yield: $1.05 \times 10^{16} \text{ s}^{-1}$ (<u>42,000 times larger</u> than ⁷Li(p, γ) of 2.5KW), estimated by MCNPX. 19

Longitudinal section of the model for specifying the initial photon source that dominates the surface photon dose of the ⁷Li cold neutron source

Average spectrum of leakage photons from the (n, γ) reactions in various components in the L-type source and that of the (p, γ) reactions in the lithium target

- The intensity of leakage photons is dominated <u>not by the (p, γ) reactions</u> but by the (n, γ) reactions.
- We adopted <u>two layered shields</u> consisting of the inside boric acid resin slabs for neutrons and the outside lead slabs for photons to reduce the thickness of shields around the source.

Longitudinal section of the model for examining the thickness of <u>the shield for neutrons</u> around the S-type source

 <u>The boric acid resin slabs (BAR) or the</u> <u>boron-enriched concrete slabs (BEC)</u> are installed on the all surfaces of the reflector of the ⁷Li source of 2.5KW or the Bremsstrahlung source of 0.77KW.

 The neutron dose distributions on the slabs <u>having various thickness</u> were calculated.

Shield for neutrons (boric acid resin or boron-enriched concrete)

<u>Maximum neutron dose</u> depending on the thickness of the slab

BAR: boric acid resin, BEC: boron-enriched concrete

The necessary shielding components for neutrons around the ⁷Li source of 2.5MeV, 1mA

- The <u>36cm thick</u> boric acid resin slabs (1.33g/cm³, <u>H (4.71 × 10²² cm⁻³), B (9.04 × 10²¹ cm⁻³), etc.) : 6.7 tons weight</u> (89.8 tons for Bremsstrahlung of 35MeV, 0.022mA)
- The <u>50cm thick</u> boron-enriched concrete slabs (2.2g/cm³, <u>H (2.49 × 10²² cm⁻³), B (1.54 × 10²¹ cm⁻³), etc.) : 18.6 tons weight</u> (171.8 tons for Bremsstrahlung of 35MeV, 0.022mA)
- The use of the boric acid resin as a substitute for the boron-enriched concrete may <u>make the construction cost for the shielding</u> <u>components decrease</u>.

Longitudinal section of the model for examining the thickness of the shield for γ -rays around the S-type source

• <u>The lead slabs or the iron slabs</u> are installed on the 36 cm or 140 cm thick BAR slabs for the ⁷Li or the Bremsstrahlung sources respectively.

 The photon dose distributions on the slabs <u>having various thickness</u> were calculated.

<u>Maximum photon dose</u> depending on the thickness of the slab

<u>The necessary shielding components for photons</u> around the ⁷Li source of 2.5MeV, 1mA

- The <u>26cm thick</u> lead slabs (11.35 g/cm³) :<u>80.9 tons weight</u> (492.3 tons for Bremsstrahlung of 35MeV, 0.022mA)
- The <u>48cm thick</u> iron slabs (7.86 g/cm³) :<u>126.9 tons weight</u> (800.1 tons for Bremsstrahlung of 35MeV, 0.022mA)
- We should use <u>the lead slab shields for the ⁷Li source of</u> <u>2.5 KW from the weight point of view</u>.

The calculation results show that

- The shielding components consisting of the inside boric acid resin slabs and the outside lead slabs are effective in dropping the weight and the volume of shields for the ⁷Li source of 2.5 KW.
- The ⁷Li source of 2.5 KW needs a much smaller volume of the shielding components than those of typical Bremsstrahlung sources of 0.77 KW.

Conclusion

 The ⁷Li source of 2.5 KW allows flexibility for installation in any facility with a low construction cost, since a 2.5MeV proton linear accelerator having the surface radiation dose of less than 20 µSv/h on the shielding components is permitted by the regulation in Japan to be used anywhere. Calculations of the energy spectra and the angular distribution of neutrons from the target

- dY(E)/dE was estimated so that the target was placed in the center of a sphere with a radius of 100 cm and the neutron flux shape on the sphere per produced neutron was tallied by the MCNPX.
- $dY(\theta)/d\theta$ was obtained by multiplying the neutron flux shape by $2\pi \sin\theta$ term from the solid angle differential element.