

Neutronic studies on a pulsed thermal neutron source based on the Be(p,n) reaction by using a compact proton accelerator

O Hiroyuki HASEMI Fujio HIRAGA Yoshiaki KIYANAGI Hokkaido Univ.

The 1st meeting of the Union for Compact Accelerator-driven Neutron Sources (UCANS-I) @Tsinghua Univ.

Introduction

Purpose

Development of a high-performance pulsed thermal neutron source for imaging.

Calculation method

- Simulation code : MCNPX ver.2.6
- Nuclear data : ENDF/B-V, -VI and -VII
- Neutron is generated by the Be(p,n) reaction
 - Proton energy : 11 MeV
 - Neutron yield $: 2.15 \times 10^{13} \text{ n/sec/mA}$
- Thermal neutrons defined here are less than 0.5 eV

We have carried out these subjects

- Choice of a material for moderator in terms of intensity, brightness and pulse width
- Optimizing TMRA
- Estimating for the effect of some design parameters on thermal neutron flux

Comparison of characteristics of H_2O with those of D_2O as a moderator.

 H_2O moderator (30 x 30 x 4 (cm)) () : ratio to D_2O case

- Brightness : 1.23×10^{-3} n/cm²/source (3.0 times)
- Peak intensity $: 2.89 \times 10^{-4} \text{ n/cm}^2/\text{sec/MeV/source} @ 49.2 \text{meV} (3.3 \text{ times})$
- FWHM : $61 \,\mu \sec @ 27.7 \text{meV} (11 \,\%)$
- Time- and area- integrated intensity : 3.48x10⁻⁷ n/cm²/source at 5 m (0.58 times)

*Size of D_2O moderator : 50 x 50 x 18 (cm)

Comparison of characteristics of H_2O with those of D_2O as a moderator.

 H_2O moderator (30 x 30 x 4 (cm)) () : ratio to D_2O case

- Brightness : $1.23 \times 10^{-3} \text{ n/cm}^2/\text{source} (3.0 \text{ times})$
- Peak intensity $: 2.89 \times 10^{-4} \text{ n/cm}^2/\text{sec/MeV/source} @ 49.2 \text{meV} (3.3 \text{ times})$
- FWHM : $61 \,\mu \sec @ 27.7 \text{meV} (11 \,\%)$
- Time- and area- integrated intensity : 3.48x10⁻⁷ n/cm²/source at 5 m (0.58 times)

*Size of D_2O moderator : 50 x 50 x 18 (cm)

Comparison of characteristics of H_2O with those of D_2O as a moderator.

 H_2O moderator (30 x 30 x 4 (cm)) () : ratio to D_2O case

- Brightness : 1.23×10^{-3} n/cm²/source (3.0 times)
- Peak intensity $: 2.89 \times 10^{-4} \text{ n/cm}^2/\text{sec/MeV/source} @ 49.2 \text{meV} (3.3 \text{ times})$
- FWHM : $61 \,\mu \sec @ 27.7 \text{meV} (11 \,\%)$
- Time- and area- integrated intensity : 3.48×10^{-7} n/cm²/source at 5 m

(0.58 times)

*Size of D_2O moderator : 50 x 50 x 18 (cm)

Comparison of characteristics of H_2O with those of D_2O as a moderator.

 H_2O moderator (30 x 30 x 4 (cm)) () : ratio to D_2O case

- Brightness : $1.23 \times 10^{-3} \text{ n/cm}^2/\text{source} (3.0 \text{ times})$
- Peak intensity $: 2.89 \times 10^{-4} \text{ n/cm}^2/\text{sec/MeV/source} @ 49.2 \text{meV} (3.3 \text{ times})$
- FWHM : $61 \,\mu \sec @ 27.7 \text{meV} (11 \,\%)$
- Time- and area- integrated intensity : 3.48x10⁻⁷ n/cm²/source at 5 m (0.58 times)

*Size of D_2O moderator : 50 x 50 x 18 (cm)

However, compared at same L/D, the intensity of H_2O moderator is about 1.6 times as large as that of D_2O .

 \rightarrow D₂O moderator don't have advantages on imaging.

 H_2O is much better than D_2O as a moderator for a pulsed thermal neutron.

 \rightarrow We chose H₂O as a moderator material.

Optimizing TMRA

Thank you for your attention!

I'll talk about the details in poster session.