A Development Project of Boron Neutron Capture Therapy System based on a Linac Neutron Source

Yoshiaki Kiyanagi¹, Kenji Asano², Hiroyuki Arakawa¹, Shin Fukuchi², Susumu Ikeda³, Kenju Kimura², Hitoshi Kobayashi³, Michio Kubota⁴, Hiroaki Kumada⁴, Hiroshi Matsumoto³, Akira Matsumura⁴, Takeji Sakae⁴, Kimiaki Saitoh⁵, Tokushi Shibata⁵, Masakazu Yoshioka³

¹Graduate School of Engineering, Hokkaido University, Sapporo, Japan ²Ibaraki Prefecture, Mito, Ibaraki, Japan ³ KEK, Tsukuba, Ibaraki, Japan ⁴Institute of Clinical Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan ⁵Japan Atomic Energy Agency, Tokai, Ibaraki, Japan

17 Aug 2010, Beijing, China, UCANS-I

Principle of Boron Neutron Capture Therapy: BNCT

(9 µm)

$${}^{10}B + {}^{1}n \rightarrow [{}^{11}B] \rightarrow {}^{7}Li + {}^{4}He + 2.79 \text{ MeV}$$

BNCT is a <u>tumor cell selective</u> charged particle therapy.

University of Tsukuba

BNCT at JRR-4

Reactor stopped

BNCT treatments are increasing.

(provided by Dr. Kumada)

Survival rate ; newly-diagnosed Glioblastoma (n=71) Comparison of CRT, proton & BNCT at TUV (1998-2007)

BNCT is superior to CRT and proton therapy both in progression free survival and overall survival

CRT: conventional radiation therapy

<u>Choice of reactions</u> (Preliminary optimization of a moderator)

Li(p,n) reaction

Method ①: Direct use of neutrons produced by 1.9MeV proton

The energy of the produced neutrons is low enough to use the neutron for BNCT

Method (2): Use of the moderated neutrons produced by 2.5-3.0 MeV protons

The energy of the produced neutrons is little bit higher but the intensity is also higher. The required moderation will be not so severe, so reduction is not so much.

Be(p,n) reaction

Method (3): Use of the moderated neutrons produced by 11 MeV protons

The neutron energy is much higher than Li(p,n) reaction, but the intensity is about 15 times higher. So, we will get enough intensity even after moderation.

	Ep	Neutron intensity	Neutron energy	
Li(p,n)	1.9MeV	$1.5 \times 10^{10} (n/sec/mA)$	Max. 90 keV	Ave. 38keV
	2.5MeV	$8.8 \times 10^{11} (n/sec/mA)$	Max. 787keV	Ave. 326keV
Be(p,n)	11MeV	$2.15 \times 10^{13} (n/sec/mA)$	Max. 8.55MeV	Ave. 2.37MeV

①Direct use of Li(p,n) neutrons

Simulation code: MCNPX

Thermal neutron (1/sec/cm ² /mA)	Epithermal neutron (1/sec/cm ² /mA)	Fast neutron dose/ ϕ_{epi} (Gy•cm ²)
2.11×10^{3}	1.29×10^{8}	3.63×10^{-12}

Fast neutron dose/ ϕ_{epi} should be less than $1.0 \times 10^{-12} (Gy \cdot cm^2)$

This method cannot fulfill the condition of Fast neutron dose/ ϕ_{epi} that must be less than 1.0×10^{-12} (Gy · cm²).

(2)Li(p,n) reaction, (3)Be(p,n) reaction —Slab type—

Simulation code: MCNPX

Ep (MeV)	Moderator size	Thermal n (1/sec/cm ² /mA)	Epi-thermal n (1/sec/cm ² /mA)	Fast n dose/ ϕ_{epi} (Gy•cm ²)	
2.5	Φ 36cm × 21cm	3.29×10^{3}	2.79×10^{7}	1.00×10^{-12}	
2.6	Φ 38cm × 22cm	4.81×10^{3}	3.09×10^{7}	1.00×10^{-12}	
2.7	Φ 30cm × 24cm	3.75×10^{3}	3.16×10^{7}	9.96×10^{-13}	
2.8	Φ 36cm × 25cm	6.36×10^{3}	3.17×10^{7}	9.84×10^{-13}	
2.9	Φ40cm × 26cm	9.11×10^{3}	3.19×10^{7}	9.96×10^{-13}	
3.0	Φ 40cm × 27cm	9.25×10^{3}	3.23×10^{7}	1.00×10^{-12}	
11	Φ 50cm × 40cm	9.10×10^5	1.63×10^{8}	1.00×10^{-12}	

(1)Thermal n<5.0 × 10^7 (1/sec/cm²)

(2) Epi-thermal n> $1.0 \times 10^9 (1/\text{sec/cm}^2)$

(3) Fast n dose/ ϕ_{epi} < 1.0 × 10⁻¹² (Gy · cm²)

(Thermal n < 0.5eV Epi-thermal $0.5eV \sim 10keV$ Fast n > 10keV)

Minimum current of the accelerators

Li(p,n): 30.96mA (Ep=3.0MeV), Be(p,n): 6.13mA (11MeV)

Overall Plan of the Development Project

1. Accelerator for BNCT

Compact proton Linac which can install in a hostital (<100m²) Proton Beam Spec. : around 10MeV x a few mA beam on average

2. Neutron Source System

High Flux Neutron Generator & Cooling System Neutron Target Material : Be, C, etc.

3. Moderator and Collimator

Optimum Design of Neutron Moderator and Collimator Goal : Epithermal neutron: >1x10⁹ (n/cm²/s) at beam aperture

Accelerator design concept for BNCT

Technology choice: Cyclotron or Linac? Parameters Beam energy Beam power (duty and peak beam current) □The highest-priority issue: □Target system as a medical facility Cooling method for high-density heat load □Maintenance for highly-activated target system Technology choice should be based on the above issues.

Accelerator design concept for BNCT

Technology choice:

□Cyclotron or Linac?→Linac: IS+RFQ+DTL(or IH)

□Beam energy →8MeV

□Beam power (duty and peak beam current) →>40kW

□The highest-priority issue:

□Target system as a medical facility □Cooling method for high-density heat load □Maintenance for highly-activated target system

□Technology choice should be based on the above issues.

Requirement for BNCT accelerator #1

ITEM	JRR-4	PERFORMANCE GOAL	MINIMUM GOAL	CYCLOTRON (KYOTO UNIV.)
Beam spectrum	Epi-thermal neutron beam (1 eV ~ 10 eV)			
Fluence during treatment (n/cm ²)	~ 4.0) x 10 ¹² (BNCT pro	tocol for a brain	tumor)
Expose time per treatment (min.)	~17	<30	<60	~37
Maximum generated thermal neutron flux in a living body (n/cm²/s)	4.0 x 10 ⁹	>2.2 x 10 ⁹	>1.1 x 10 ⁹	1.8 x 10 ⁹
Maximum generated γ-Ray flux in a living body (Gr/h)	~6	≤4.2	≤2.1	~3.5
Free beam epi-thermal neutron flux (n/cm ² /s)	2.2 x 10 ⁹	>1.2 x 10 ⁹	>0.6 x 10 ⁹	~1.0 x 10 ⁹
γ-Ray flux in free beam (Gr/h)	~1.2	<1.2	<0.6	~10?
γ-Ray contamination (Gr·cm²/n)	1.5 x 10 ⁻¹³	≤3.0 x 10- ¹³ (IAEA: 2 x 10 ⁻¹²)	≤3.0 x 10 ⁻¹³	3.0 x 10 ⁻¹³ ?
Fast neutron contamination (Gr·cm ² /n)	3.1 x 10 ⁻¹³	≤1 x 10 ⁻¹² (IAEA: 1 x 10 ⁻¹²)	≤1 x 10 ⁻¹²	~1 x 10 ⁻¹²
Proton beam energy (MeV)	-	LINAC: 8 MeV	LINAC: 10 MeV	30 MeV
Peak beam current (mA)	-	> 5 mA	> 3 mA?	1 mA
Output power (kW)	(3500 kW)	> 40 kW	> 30 kW?	30 kW
Target material	-	Be, Li etc.	Be, Li etc.	Ве
Target life time (year or number of patient)	-	>half year or >100	>half year or >50	one year or 500~100?
Capacity of the facility (number of patient per year)	34 (@2007) available for >50 people	> 300	~40	> 100?

Requirement for BNCT accelerator #2 Issues as a medical facility

RAMS (Reliability, Availability, Maintainability and Safety)
 Target system: long life time and easy maintenance
 life time > several months
 leasy replacement
 Small number of specialist can operate the whole system
 laccelerator, target system, radiation safety, etc.
 Small amount of radio-active waste
 Be target, tritium, shielding material (lead, steel, etc.)
 Compact facility area < 100m²

These requirements are different from the accelerators for industry use.

Baseline accelerator technology → the front end of J-PARC linac

Photos in works

Phase space plot of the reference design of 30mA and 50 mA RFQ for J-PARC Courtesy of Y. Kondo

Kyoto University press release on August 5, 2009 → 30MeV, 1mA

Our technology choice is different, avoiding doubling!

Feasibility Study on a Common Use Accelerator System of Neutron Production for BNCT and Radionuclide Production for PET

Takahiro Tadokoro¹, Yukio Kawakubo¹, Hirofumi Seki², Ryuichi Tayama², Kikuo Umegaki³, Mamoru Baba⁴, Tooru Kobayashi⁵

¹ Power & Industrial Systems R & D Laboratory, Hitachi, Ltd., Ibaraki 319-1221, Japan
 ² Hitachi Works, Hitachi, Ltd., Ibaraki 317-8511, Japan
 ³ Central Research Laboratory, Hitachi, Ltd., Tokyo 185-8601, Japan
 ⁴ Cyclotron Radio Isotope Center, Tohoku University, Miyagi 980-8578 Japan
 ⁵ Research Reactor Institute, Kyoto University, Osaka 590-0494, Japan

Table 4. Example specifications of a BNCT-PET common use accelerator.

Accelerated Particle	proton	
Beam Energy (MeV)	11	
Pulse Beam Current (mA)	30	
Pulse Duration (μ sec)	200	
Pulse Repetition Rate (Hz)	500	
Average Beam Current (mA)	3.0	

Fig.6. A schematic view of a BNCT-PET common use accelerator.

Fig.2. Cross-sectional view of a moderator geometry for epi-thermal neutron irradiation fields.

Conceptual drawing of BNCT accelerator system

Based on the HITACHI plan

Summary

We are just at beginning stage of the project for constructing the BNCT facility based on a proton accelerator.

There are many things to be developed and optimized concerning to the accelerator, the moderator system including a target, the collimator system, the shield, the activity and so on.

For such development and optimization UCANS collaboration is useful.

Thank you for your attention!