

Neutron Radiography with Compact Accelerator at Peking University: Challenges and Solutions

Guo Zhiyu

State Key Lab of Nuclear Physics & Technology School of Physics, Peking University, China

2010. 8. 17

Outline

- Motivation
- Background
- Problems of NR with CANS
- **PKUNIFTY: the solutions**
- Conclusions
- Poster A1: Design of PKUNIFTY accelerator facility
- Poster T2: Design of PKUNIFTY moderator assembly

Motivation

- To set up a compact accelerator-driven thermal neutron radiography facility
- To fit the basic requirements of NR
- The size is as small as possible
- The cost is as low as possible
- The goals as an experimental platform:
 - Education and training
 - Technology development
 - Application investigation

Applications of CANS

Gillespie & McMichael, Applications of MeV proton and deuteron linear accelerators. Proc. PAC 95, p107, 1995.

Performance of NR

- Spatial Resolution 🛛
- Contrast
- S/N Ratio
- Field of View

- Neutron Beam Quality
- Neutron Flux at imaging plane
- L/D Ratio
- Cd Ratio (neutron spectrum purity)
- n/γ Ratio

- Reactors
 - High intensity, CW beam
- SNS
 - High intensity, pulsed beam (PSI: CW)
- CANS
 - Middle intensity, reasonable cost
- Isotope source & sealed neutron tube
 - Low intensity, not practical for NR

- Limited neutron flux and L/D
 - The performance of NR largely depends on the neutron flux at imaging plane and L/D
 - The neutron flux at imaging plane is proportional to D²/L²
 - ⇒It is important to obtain enough thermal neutron intensity (higher fast neutron yield and thermalization efficiency)

Neutron Flux vs. L/D

Neutron Flux vs. L/D

• Neutron flux requirement

- Despite of the reactor power, a flux level was identified for practical neutron imaging with thermal or cold neutrons: 1e5 n/(cm2 s). This corresponds to an exposure time of about 1000s = 16 min (with efficient digital imaging detectors). For dynamic imaging the lower level of neutron intensity has been found to be 1e6 n/(cm2 s).
- The lower limit ... was found at the level of 250 kW (example, TU Vienna)

IAEA consultancy meeting report, Non destructive and analysis techniques using neutrons. 08CT14309, 2009.

- Neutron yield vs. size and cost
 - Neutron yield depends on selected nuclear reaction and beam energy/current
 - Higher beam energy ask longer accelerator and more RF power
 - Higher beam current ask better accelerator technology and more RF power
 - Both higher energy and current means more cost

⇒It is difficult to realize small size, low cost and high neutron yield simultaneously

Neutron Yields of CANS

- γ background
 - From beam-target reaction, especially Be (d, n) reaction
 - From neutron non-elastic scattering, neutron capture and (n, γ) reaction
 ⇒Bad S/N ratio & CCD life time
- Miyamaru et al., Measurement of Gamma-ray emission from p-Li, p-Be and d-Be reactions for accelerator-based BNCT. Proc. ICNCT-12, p374, 2006.

 γ Spectrum of Be (p, n) @ Ep = 3 MeV

- Limited Cd ratio
 - Thermalization gives a continuum
 - Epithermal neutrons will reduce the resolution

- To insert filter will reduce the neutron flux largely (may down to 1/6 or even bad)
- No filter means bad Cd ratio

⇒Difficult choice between n flux and Cd ratio

• Beam loss

- High current beam always has halo, which is easy lost during transmission
- Lost beam ions with certain energy can active the accelerator component materials
- Deuterons lost in the structure materials may become target atoms and generate neutrons under the beam bombarding

⇒Beam loss should be restricted

- Summary
 - Limited neutron flux and L/D
 - Neutron yield vs. size and cost
 - γ background
 - Limited Cd ratio
 - Beam loss

• Main design principles

- Can be used for basic industrial applications and technology development of thermal NR
- Smaller size and lower cost with acceptable neutron flux and L/D ratio
- RFQ accelerator with RF transmitter using tetrode amplifier but klystron
- Try to find the way to get higher n/γ ratio and Cd ratio without large flux attenuation

- Be (d, n) reaction was selected
 - Lower beam energy is possible than proton
 - Be target is easier to handle than Li
- Tetrode TH781 was selected
 - 400 kW peak power with 10% duty factor can be delivered at around 200 MHz
- Deuteron beam parameters
 - 40 mA peak current with 1 ms pulse width and 10% duty factor @ 2 MeV energy
 - Average beam power of 8 kW

- Neutron yield of PKUNIFTY
 - Neutron yield of Be (d, n) reaction at Ed = 2 MeV
 - $Y = 8 \times 10^8 \text{ n/}\mu\text{C}$
 - With average current 4 mA

 $Y = 3 \times 10^{12} \text{ n/s}$

- Target/moderator/reflector/shielding assembly design
 - Target: 45° from the beam axis
 - Moderator: Polyethylene
 - Reflector: Water
 - Shielding: Pd + Boron doped Polyethylene

- Collimator design
 - 90° from the beam axis
 - Inner collimator + Outer collimator
 - Changeable aperture
 - $\Rightarrow Fast neutrons and \gamma ray can be attenuated effectively, n/\gamma = 1 \times 10^{10} n/cm^2/Sv$
 - ⇒ L/D can be adjusted flexibly (15 200)
 - \Rightarrow Neutron flux 5 × 10⁵ n/cm²/s @ L/D = 50

Neutron Radiography with Compact Accelerators

- Pre-study on NR technology
 - Using 4.5 MV Van de Graaff and Be (d, n) reaction
 - With thermal neutron flux of 5×10^3 n/cm²/s @ L/D = 20 Pb Cd

Ball pen with metal cover

Yubin Zou et al., Experimental study on neutron radiography with accelerator based neutron source using D-Be reaction. Proc. WCNR-8, p87, 2008.

ASTM BPI & SI indicators

- Cd ratio improvement
 - Cd ratio = 2 @ L/D = 50 without filter
 - We are trying to improve it with less thermal neutron flux loss, the methods are being investigated

- Deuteron beam loss control
 - Reasons of beam loss in RFQ cavity: beam mismatch and the emittance growth due to space charge forces couple the longitudinal and transverse particle motions
 - A matched quasi-equipartitioning design method was adopted
 - ⇒ The energy of most deuteron particles lost in RFQ cavity is less than 100 keV

• Bird view of CANS for PKUNIFTY

Conclusions

- There are some special demands to CANS when it is used for neutron radiography
- Choice has to be made for neutron flux vs. L/D ratio, neutron yield vs. size and cost, how to improve n/γ ratio and Cd ratio, as well as the beam loss control
- PKUNIFTY gives a possible solution, and it is expected to start its commissioning and operation next year

Design of PKUNIFTY Accelerator Facility

Yuanrong Lu, Xueqing Yan, Kun Zhu, Shixiang Peng, Shuli Gao, Guo Zhiyu

State Key Lab of Nuclear Physics & Technology School of Physics, Peking University, China

2010. 8.

D⁺ **RFQ design**

Neutron Radiography with Compact Accelerators

D⁺ **RFQ bead pull measurement**

- 201.5MHz, Q=3350
- Field distribution

Neutron Radiography with Compact Accelerators

D⁺ **RFQ vacuum test**

• Vacuum is better than 2 × 10⁻⁵ Pa

2010.7

Other components

Design of PKUNIFTY Moderator Assembly

Yubin Zou, Weiwei Wen, Han Li, Guoyou Tang, Dawei Mo, Guo Zhiyu State Key Lab of Nuclear Physics & Technology

School of Physics, Peking University, China

2010. 8.

What is an idea moderator for us?

• High efficiency:

More thermal neutron output

• Pure beam:

Less fast neutron and gamma output

• Low background:

Assembled with shield

• Compact size

Optimization

Moderator size Thermal neutron flux increases with the moderator size until its saturation

Neutron Radiography with Compact Accelerators

Moderator structure & parameters

- Material: PE + Water
- 90° between collimator and beam line
- L/D range: 15-200 or more
- Thermal neutron flux: 5 × 10⁵n/cm²/s @ L/D=50
- Cd ratio: ~2
- n/γ : better than
 - $1 \times 10^{10} \text{ n/cm}^2 \cdot \text{Sv}$

Thank you for your attention !