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Motivation
• To set up a compact accelerator-driven 

thermal neutron radiography facility
• To fit the basic requirements of NR
• The size is as small as possible
• The cost is as low as possible
• The goals as an experimental platform:


 
Education and training


 
Technology development


 
Application investigation
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Applications of CANS

Gillespie & McMichael, Applications of MeV proton and 
deuteron linear accelerators. Proc. PAC 95, p107, 1995.
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Performance of NR
• Spatial Resolution
• Contrast
• S/N Ratio
• Field of View
 Neutron Beam Quality
• Neutron Flux at imaging plane
• L/D Ratio
• Cd Ratio (neutron spectrum purity)
• n/

 
Ratio

L

D
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NS of NR
• Reactors


 
High intensity, CW beam

• SNS


 
High intensity, pulsed beam (PSI: CW)

• CANS


 
Middle intensity, reasonable cost

• Isotope source & sealed neutron tube


 
Low intensity, not practical for NR
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Problems of NR with CANS
• Limited neutron flux and L/D


 
The performance of NR largely depends on 
the neutron flux at imaging plane and L/D


 
The neutron flux at imaging plane is 
proportional to D2/L2

It is important to obtain enough thermal 
neutron intensity (higher fast neutron yield 
and thermalization efficiency)
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Neutron Flux vs. L/D

 R.W. Hamm, Multi- 
purpose Neutron 
Generators Based on 
the Radio Frequency 
Quadrupole Linear 
Accelerator.    Proc. 
SPIE, 4142: 39, 2000.
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Neutron Flux vs. L/D
• Neutron flux requirement


 
Despite of the reactor power, a flux level was 
identified for practical neutron imaging with 
thermal or cold neutrons: 1e5 n/(cm2 s). This 
corresponds to an exposure time of about 1000s = 
16 min (with efficient digital imaging detectors). 
For dynamic imaging the lower level of neutron 
intensity has been found to be 1e6 n/(cm2 s).


 
The lower limit … was found at the level of 250 
kW (example, TU Vienna)

 IAEA consultancy meeting report, Non destructive and 
analysis techniques using neutrons. 08CT14309, 2009.
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Problems of NR with CANS
• Neutron yield vs. size and cost


 
Neutron yield depends on selected nuclear 
reaction and beam energy/current


 
Higher beam energy ask longer accelerator 
and more RF power


 
Higher beam current ask better accelerator 
technology and more RF power


 
Both higher energy and current means more 
cost
It is difficult to realize small size, low cost 

and high neutron yield simultaneously
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Neutron Yields of CANS

M.R. Hawkesworth,  
Neutron Radiography: 
Equipment and Methods. 
Atomic Energy Review,  
15: 169-220, 1977.

Main reactions:
Li (p, n)
Be (p, n)
Li (d, n)
Be (d, n)
D (d, n)
T (d, n)
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Problems of NR with CANS
• 

 
background


 
From beam-target reaction, 
especially Be (d, n) reaction


 
From neutron non-elastic
scattering, neutron capture 
and (n, ) reaction
Bad S/N ratio & CCD life 

time



 

Spectrum of Be (p, n) @ Ep = 3 MeV



 

Spectrum of Be (d, n) @ Ed = 3 MeV

Miyamaru et al., Measurement of Gamma-ray 
emission from p-Li, p-Be and d-Be reactions 
for accelerator-based BNCT. Proc. ICNCT-12, 
p374, 2006.
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Problems of NR with CANS
• Limited Cd ratio


 
Thermalization gives a 
continuum


 
Epithermal neutrons will 
reduce the resolution


 
To insert filter will reduce the neutron flux 
largely (may down to 1/6 or even bad)


 
No filter means bad Cd ratio
Difficult choice between n flux and Cd ratio
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Problems of NR with CANS
• Beam loss


 
High current beam always has halo, which 
is easy lost during transmission


 
Lost beam ions with certain energy can 
active the accelerator component materials


 
Deuterons lost in the structure materials 
may become target atoms and generate 
neutrons under the beam bombarding 
Beam loss should be restricted
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Problems of NR with CANS
• Summary


 
Limited neutron flux and L/D


 
Neutron yield vs. size and cost


 


 
background


 

Limited Cd ratio


 
Beam loss
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PKUNIFTY: the Solutions
• Main design principles


 
Can be used for basic industrial applications 
and technology development of thermal NR


 
Smaller size and lower cost with acceptable 
neutron flux and L/D ratio


 
RFQ accelerator with RF transmitter using 
tetrode amplifier but klystron


 
Try to find the way to get higher n/

 
ratio 

and Cd ratio without large flux attenuation
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PKUNIFTY: the Solutions
• Be (d, n) reaction was selected


 
Lower beam energy is possible than proton


 
Be target is easier to handle than Li

• Tetrode TH781 was selected


 
400 kW peak power with 10% duty factor  
can be delivered at around 200 MHz

• Deuteron beam parameters


 
40 mA peak current with 1 ms pulse width 
and 10% duty factor @ 2 MeV energy


 
Average beam power of 8 kW
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PKUNIFTY: the Solutions
• Neutron yield of 

PKUNIFTY


 
Neutron yield of   
Be (d, n) reaction 
at Ed = 2 MeV
Y = 8 

 
108 n/C


 

With average 
current 4 mA
Y = 3 

 
1012 n/s
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PKUNIFTY: the Solutions
• Target/moderator/reflector/shielding 

assembly design


 
Target: 45

 
from the beam axis


 

Moderator: Polyethylene


 
Reflector: Water


 
Shielding: Pd + Boron doped Polyethylene
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PKUNIFTY: the Solutions
• Collimator design


 
90

 
from the beam axis


 

Inner collimator + Outer collimator 


 
Changeable aperture
 Fast neutrons and 

 
ray can be attenuated 

effectively, n/
 

= 1 
 

1010 n/cm2/Sv
 L/D can be adjusted flexibly (15 - 200)
 Neutron flux 5 

 
105 n/cm2/s @ L/D = 50



2010-9-8 Neutron Radiography with Compact Accelerators 22

1000 200 400300 500 600

L/D

TU Vienna

PSU

Tokyo U

PSI

WRS-M, Hungary

FRM-II

CARR, China 
(design)

JRR-3

PKUNIFTY

NIST

HANARO, Korea

PL4, AccSys

Cf-252 (10 mg)

4.5 MV Van de Graaff, PKU

Neutron Flux vs. L/D 
of Thermal NR Facility



2010-9-8 Neutron Radiography with Compact Accelerators 23

PKUNIFTY: the Solutions
• Pre-study on NR technology


 
Using 4.5 MV Van de Graaff and Be (d, n) 
reaction


 
With thermal neutron flux of 5103 n/cm2/s 
@ L/D = 20

ASTM BPI & SI indicators

Ball pen with metal cover

 Yubin Zou et al., Experimental study on 
neutron radiography with accelerator 
based neutron source using D-Be reaction. 
Proc. WCNR-8, p87, 2008.
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PKUNIFTY: the Solutions
• Cd ratio improvement


 
Cd ratio = 2 @ L/D = 50 without filter


 
We are trying to improve it with less 
thermal neutron flux loss, the methods are 
being investigated
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PKUNIFTY: the Solutions
• Deuteron beam loss control


 
Reasons of beam loss in RFQ cavity: beam 
mismatch and the emittance growth due to 
space charge forces couple the longitudinal 
and transverse particle motions


 
A matched quasi-equipartitioning design 
method was adopted
 The energy of most deuteron particles lost 

in RFQ cavity is less than 100 keV
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PKUNIFTY: the Solutions
• Bird view of CANS for PKUNIFTY
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Conclusions
• There are some special demands to CANS 

when it is used for neutron radiography
• Choice has to be made for neutron flux vs. 

L/D ratio, neutron yield vs. size and cost, 
how to improve n/

 
ratio and Cd ratio, as 

well as the beam loss control
• PKUNIFTY gives a possible solution, and 

it is expected to start its commissioning and 
operation next year
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D+ RFQ design
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D+ RFQ bead pull measurement
• 201.5MHz, Q=3350
• Field distribution
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D+ RFQ vacuum test
• Vacuum is better than 2×10-5 Pa 

2010. 7
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Other components
• ECR ion source & LEBT

100 mA p or 80 mA D+ @ 50kV
0.1-1ms pulse @ 100 Hz

• RF transmitter



Design of PKUNIFTY Design of PKUNIFTY 
Moderator AssemblyModerator Assembly
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2010. 8. 
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What is an idea moderator for us?
• High efficiency:

More thermal neutron output
• Pure beam: 

Less fast neutron and gamma output
• Low background: 

Assembled with shield
• Compact size
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Optimization
• Moderator size

Thermal neutron flux increases 
with the moderator size until 
its saturation

• Neutron beam direction



2010-9-8 Neutron Radiography with Compact Accelerators 36

Moderator structure & parameters
• Material: PE + Water
• 90o between collimator and beam line
• L/D range: 15-200 or more
• Thermal neutron flux: 

5×105n/cm2/s @ L/D=50
• Cd ratio: ~2
• n/γ: better than 

1×1010 n/cm2•Sv
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Beam line
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Water container
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Thank you for 
your attention !
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