Application of Neutron Detection Systems to Compact Neutron Sources

> Suguru Muto KENS, KEK

Collaboration of MLF-DAQ

•KEK:

T. Otomo, S. Satoh, K. Nakayoshi, H. Sendai, E. Inoue, Y. Yasu, J. Suzuki, H. Oshita

JAEA/J-PARC Center: T. Nakatani, Y. Inamura, T. Itoh

•Ibaraki University:T. Hosoya

Contents

DAQ for MLF/J-PARC
³He-PSD System / NeuNET system
Software
for Compact Neutron Source Experiments
Summary

Japan Proton Accelerator Research Complex

bulkhead

32 m

Materials and Lift Science Ex

MLF/J-PARC DAQ System

Future of J-PARC Neutron Source

• High Intensity (1MW), Pulsed Neutron (25Hz) Source

DAQ System concept

(1) New Experiments with neutron detection event recording

(e.g. observation of transition phenomenon)

 \Rightarrow Histogram to Event-mode data-taking

(still photo to motion picture)

 \Rightarrow Mass data production -> high speed data transfer

(2) Accurate and Precise Experiments on TOF measurements

 (e.g. World highest resolution spectrometer)

 large spectrometer and wide detection area
 ⇒ distributed and scalable DAQ system

>ホーム >ニュース>プレス>この記事

last update:08/07/17

Press release July 17, 2008

News @ KEK プレス・リリース ~ 08-15 ~ For immediate release:2008年07月17日

J-PARCの中性子回折実験装置が世界最高の分解能を達成

J-PARCセンター

大学共同利用機関法人高エネルギー加速器研究機構(機構長 鈴木厚人 以下「高エネ機構」)と独立行政法人日本原 子力研究開発機構(理事長 岡崎俊雄 以下「原子力機構」)の共同運営組織であるJ-PARCセンター(センター長 永宮正 治)は、大強度陽子加速器施設J-PARC^{※1}の今年12月の一部施設利用開始を目指して調整運転を進めています。

このうち、物質・生命科学実験施設(MLF)の「超高分解能粉末中性子回折装置Super HRPD^{※2}」が、機器調整過程の平成20年6月末、世界最高の分解能^{※3}を達成したことを、データ検証の結果、確認いたしました。

今年12月に中性子利用実験を開始するJ-PARCIは、Super HRPDを初めとする高性能実験装置が幅広いユーザーに利用され、最先端研究の進展に大きく貢献することが期待されています。

BL08 : powder diffractometer shows high performance

J-PARCIは、光速近くまで加速した高エネルギー陽子をターゲットに ^{※4}を利用して多様な実験を行う研究施設であり、このうちMLFIは核 施設です。

Super HRPDはMLFの中性子利用ビームライン、BL-08に設置された中 ルス状の中性子を照射し、通過する中性子線の強さを解析すること ができます。今回Super HRPDが達成した世界最高の分解能となるのの 究所が持つ同種装置の分解能0.05%を上回る値で、Super HRPDが強 す。今回の成果は、高エネ機構と原子力機構における高性能パルンさせ ラインで中性子を輸送する技術、高性能計測技術等を結集して達成

本成果により、物質の原子レベルでの構造をより詳細に知ることが 装置として、磁性や誘電性等を併せもつマルチフェロイック物質^{※6}や 構造科学研究への貢献が期待されています。

New ³He-PSD System

Changing Items from old system Data-taking : Histogram to Event-mode (recording neutron by neutron) Data processing : on board circuit to software based Data transfer : Fast and wide-band

Technique : from the Detector Technology Project (DTP) of KEK • Network-based high-speed data transfer: SiTCP • Software based data processing: DAQ-Middleware

Developing NeuNET

- •KENS old PSD electronics + SiTCP \Rightarrow NeuNET electronics
- •NeuNET electronics + DAQ-Middleware \Rightarrow NeuNET system

NeuNET

Future

- Recording neutron detection as an event PSD No, detection position and time
- Data transfer via network easily expand data band width
- •Simultaneous process in 8 PSD at one board
- Flexible configuration for any ³He-PSD
 - Over 100 board in one spectrometer at MLF with
 - DAQ-Middleware
 - Small configuration for portable experiments
- Products are commercially available (Toshiba-ETD, etc.)

NeuNET Cluster

Typical NeuNET system Diagram with DAQ-Middleware (BL09/MLF)

BL09 DAQ System Block Diagram

Compact system 5 NeuNET board

Software

Systems are working on software (already main parts of the system)

Key software:

- Data-taking: "DAQ-Middleware" (from the DTP of KEK)
- Common library: "Manyo-Lib" (original)
- •User desktop: "Working desktop" (original) integrate of all experimental environment improvement of usability

Most software are shared in MLF (as much as possible) Avoid a double investment of cost and human resource

Developments are still going on

for Compact Neutron Source Experiments

DAQ system must be simple and easy for use and maintenance reduce of cost and man-power

Recommendation:

Small scale of large system (shrink but same) Sharing of operation know-how Usability of system (not be puzzled)

NeuNET system is one of candidate !!

Summary

•MLF/J-PARC experiments,

- Developed new DAQ-system
 Event-mode data-taking
 Distributed and scalable DAQ system
- NeuNET is standard for ³He-PSD system
- Shared software are also commonly used

 NeuNET system will be applied for ANY scale of experiments covered a few PSD to over 1000 PSD in one system

Special Thanks to

the Detector Technology Project of KEK