

A plan for compact acceleratorbased neutron source and detector systems at RIKEN

Katsuya Hirota RIKEN Radiation lab.

RIKEN group Hirota : Hardware Yamagata : Software Ju : Simulation (poster) Morita : Neutron imaging experiment (poster)

Neutron source Plan (tentative plan)

Developing an as possible small neutron source system The small machine is available to use for many factories.
We also want to develop the transportable neutron source.

accelerator

energy	: proton 4-7 MeV		
average current	: 0.1 ~1mA		
power	: ∼7 kW		
neutron target	:Be		
neutron energy	: thermal (fast neutron for structural materials	s)	RF電源
	pulse beam	リジッド 導波管	(1tx2~3)
neutron flux	: 10 ⁵ n/cm ² /s @sample position (L = 4m)		
	10 ⁹ n/cm ² /s @ moderator surface		
		イオン酒	

Commercial based accelerator

Model PL-7 Proton Linac

AccSys 2MeV p+/d+ Linac

Proton Linac 3-MeV

Linac Systems 2.5MeV

larget and Moderator

system

- We calculated the neutron flux by using simulation code "PHITS"
- The detail shows at Poster (J. Ju)

This calculation shows the flux $3x10^5$ n/cm²/sec at L=5 m. (proton 5.4 MeV 1mA)

7MeV1mA:6x1050.1mA: 6x1044MeV1mA:0.9x1050.1mA: 0.9x104

Fast neutron radiography

The simulation of the neutron flight

Fast Neutron Imaging (simulation)

TOF image ∠t= 10nsec

9

Model of the Transportable Neutron Source

UCANS-I Aug 15-18, 2010, Beijing

Development

- design of Neutron Source
 - small accelerator low energy and high current, short pulse, stable RF amplifer(Klystrode/Triode)?
 - target (heat, blistering, Li/Be), moderator
 - shield , Neutron Optics
 - Simulation (PHITS, GEANT4)
- Detector
 - Neutron I.I, Scintillator+CCD, GEM, μ PIC
 - fast neutron detector (liquid scintillator / μ PIC?)
 - resolution (time / spatial)
- Image Processing/ 3-D reconstruction/ Modeling technique
 - noise reduction, super-resolution, clearness, CT reconstruction
- Simulation Prediction technology
 - Using VCAD software, Collaborate with Civil engineering

Time table

- October, 2009 ~
 - Preliminary Experiment

- at JRR-3, KUR, J-PARC, Linac (Hokkaido Univ.), CYRIC(Tohoku Univ.)
- Committee of accelerator based neutron source project
- January, 2010 ~
 - Budget demanding ← We are here.
- April , 2011 ~ Project Start
 - first neutron beam on March 2012 ?
 - thermal neutron radiography
 - Large Scale Structure Experiment (fast neutron radiography)、
 - PGAA(Prompt Gamma Activation Analysis), Cl⁻ distribution in the concrete
 - phase contrast imaging
 - magnetic field measurement (polarization imaging)
 - strain, temperature measurement(pulse imaging) ?
- 2016~
 - applying manufacturing in the factory
 - mobile system, outdoors
 - flux increasing

Detector and other devices

High counting rate detector Li Pixel Detector by Hokkaido University

Scintillator: ⁶Li-glasss (GS20) 16 × 16 pixels (2.1 × 2.1 × 1 mmt /pixel) Effective area 50 × 50 mm² spatial resolution 3 mm efficiency 40% @thermal neutron counting rate 2-3 Mcps/ detector

TOF : available

RPMT detector

Hirota et.al., Phys. Chem. Chem. Phys., 2005, 7, 1836

Scintillator: $ZnS/^{6}LiF$ ^{6}Li -glasssEffective area $35 \times 35mm^{2}(\phi \ 3 \ PMT)$ $60 \times 60mm^{2}(\phi \ 5 \ PMT)$ spatial resolution (FWHM) $0.5 \sim 0.8mm$ efficiency20-30% @cold neutroncounting rate20kcps@10% dead time

compact DAQ system USB2.0 transfer → 100BASE network (NEUNETsystem at J-PARC)

Easy to use and good performance

SANS(F-, mf-, vcn-), Spin Echo, Reflectometer, Pulse Imaging, •••

TOF : available

Compact CCD System

This system is made for contrast imaging measurement at JRR-3 cold beam line (ULS).

- compact and easy handle
- use at very low background

CCD: 1/2inch 656 x 484 pixsel shutter: 1 μ sec - 3600 sec data transfer: G bit ethernet effective area: 53mm(H) x 40mm(V) weight : 2kg (w/o shield) spatial resolution : about 200 μ m

TOF : not-available

exposure time:20sec @ 4.4 Å, 3x10⁵ n/cm²/s

Standard CCD system

This system is using for neutron radiography at JRR-3 thermal beam line (guide hall).

- old system (made about 7 years ago)
- liquid N₂ Cooling CCD

CCD: 1340 x 1300 pixsels (VersArray/ Princeton) data transfer: USB2.0 effective area: 50mm(H) x 50mm(V) spatial resolution : about 200 μ m

available to change another CCD

EMCCD:C9100-12 (Hamamatsu K.K.) High sensitivity camera 512x 512 pixels

TOF : not-available

Thermal Neutron Radiography

(Morita's poster)

- We are measuring at JRR-3 MUSASI port, 8x10⁵ n/cm²/s
- This flux is about one order stronger than our small neutron source.
- The exposure time is tens sec for radiography and less than one hour for CT.

pyramid-shape ion alloy

Test piece of CFRP

CT of concrete

Neutron Optics devices

UCANS-I

RIKEN, KEK, JAEA, Hokkaido Univ.

mf-SANS mirror

magnetic devices

Summary

•RIKEN Group is planning to construct an accelerator-based neutron source. The main purpose is thermal and fast neutron radiography.

accelerator

energy	: proton 4-7 MeV		
average current : 0.1 \sim 1mA, pulse beam			
power	:1~10 kW		
neutron target	: Be / water moderator		
neutron energy	: thermal and fast neutron		
neutron flux	:about 10 ⁵ n/cm ² /s @sample position		

There are some neutron detector for thermal neutron, but poor for fast neutron.

Collaborators

RIKEN	: A. Makinouchi, Y. Yamagata, H. Sunaga, H. Yokota, Y. Otake,
	Y. Seki, S. Morita, T. Sera, J. Ju, S. Wan, S. Mihara, D. T.
KEK	Dung
JAEA	: H.M. Shimizu, S. Satoh, S. Mutoh, T. Ino, K. Mishima,
PWRI	: T. Shinohara, T. Oku, J. Suzuki, N. Metoki
Hokkaido Univ.	: Y. Kimura
Kyoto Univ.	: Y. Kiyanagi, M. Furusaka, T. Kamiyama, F.Hiraga
Tokyo Univ.	: Y. Iwashita
Hosei Univ.	: H. Yoshizawa, A. Momose, W. Yashiro
	: F. Kimura

And many graduate school students

Thank you for your attention !