Development of Neutron Detector with GEM

S. Uno, T. Uchida (KEK-DTP) K. Morita, H. Sato, T. Kamiyama, and Y. Kiyanagi (Hokkaido University) UCANS-I Tsinghua University, Beijing China August 17, 2010

- Introduction
 - ➢ GEM
 - Application to Neutron Detector
 - Detector system
- Performance study with Neutron Beam
 - Research reactor
 - Pulsed neutron sources
- Energy selective neutron radiography
- Summary & future prospect

GEM (Gas Electron Multiplier)

Double side flexible printed circuit board

Electric field

Hole diameter70μmHole pitch140μmThickness50μmCu thickness5μm

Developed by F.Sauli (CERN) in 1997. NIMA 386(1997)531

Application to Neutron Detector

Readout board

Thickness of Boron and Number of B-GEM foils

Using ²⁵²Cf radiation source

Saturation was observed in thicker Boron layer.

Higher efficiency could be obtained for more B-GEM foils.

Chamber Structure for Beam Test

Thickness of Boron Layer : **1.2μm** In total 1.2μmx9=10.8μm

Electronics : ASIC FE2007 KEK DTP ASIC Group Y.Fujita

8ch/chip

14mm 20pin ASIC board 64ch/board FPGA board

Block diagram for readout board

Present Detector System

Detector size 150mm × 150mm × 510mm

Compact and Portable System

T.Uchida et. al., "Prototype of a Compact Imaging System fo_ detectors," was published on IEEE TNS 55(2008)2698.

- I/F
 - One HV cable
 - Five LV cables
 - One Ethernet cable
- Electronics
 - Four ASIC boards
 - One FPGA board
- FE2007 ASIC : Y. Fujita (KEK)
- Data transfer and Control through Ethernet
 - SiTCP (by T. Uchida)
 - Using Note-PC

Test experiment at JRR3 research reactor in JAEA

Detection Efficiency

- 1mm^{ϕ} Pin Hole
- ³He Counter with 1inch 10atm
 - 61405 counts/100sec
- Boron-GEM Foil
 - 18599 counts/100sec
- Detection Efficiency
 - 30% at 2.2Å
 - with 4 GEM foils
 - Boron-10 : $1.2\mu m^t$
 - \rightarrow 2.4µm^t per one GEM foil

Two Dimensional Image

Position Resolution

0.5mm^{ϕ} Pine Hole

Strip number (Strip Pitch : 0.8mm)

Test experiment at the pulsed neutron source in J-PARC

Experimental setup

A neutron irradiation test was performed at BL21 in J-PARC.

> The Plateau curve as a function of input high voltage

Data samples

The beam profile and its TOF distribution

Capability to reject gamma ray

Energy Selective Neutron Radiography

- Resonance absorption region
 - E>1eV
 - BL10 in MLF of J-PARC
- Bragg edge region
 - E : Cold or Thermal
 - Hokkaido University

Energy Selective Neutron Radiography

Resonance absorption imaging

By T. Kai (JAEA) et al. at BL10 in J-PARC

Na試料(14.5-15.5µs)

One more demonstration

Imaging data with around 450µsec ToF

Extinction function for microstructure

H.Sato of Hokkaido University

Primary extinction (re-diffraction) inside a crystallite (a mosaic block)

Visualized microstructure parameter

S: Crystallite size along the beam direction

$$Sabine function$$

$$E_{hkl}(\lambda, F_{hkl}) = E_B \sin^2 \theta_{hkl} + E_L \cos^2 \theta_{hkl}$$

$$E_B = \frac{1}{\sqrt{1+x}} \text{ Bragg component} \text{ Laue component}$$

$$E_L = 1 - \frac{x}{2} + \frac{x^2}{4} - \frac{5x^3}{48} + \cdots \text{ for } x \le 1$$

$$E_L = \sqrt{\frac{2}{\pi x}} \left[1 - \frac{1}{8x} - \frac{3}{128x^2} - \frac{15}{1024x^3} - \cdots \right] \text{ for } x > 1$$

$$x = \Im \left(\frac{\lambda F_{hkl}}{V_0} \right)^2 \text{ C: Refinement parameter}$$

$$x = \Im \left(\frac{\alpha - \text{Fe (BCC) simulation calculation}}{Whole intensity} + W \text{ whore intensity}} + W \text{ whore intensity}} + W \text{ whore intensity}} + S = 10 \text{ µm}$$

$$S = 10 \text{ µm}$$

 $S = 5 \,\mu m$

 $S = 10 \, \mu m$

extinction

correction !

15

10

5

0.1

Imaging for bended iron plates at LINAC in Hokkaido University

90° Bending and Re-flattening

> +Reference (without bending)

Transmission Spectrum for Bended Iron

Shapes of Bragg-edge are analyzed in a RITS code, which is developed by H. Sato.

Crystallite size bin by bin

Results

Photo of iron plates

Two dimensional imaging of crystallite size in the bended iron plates can be done clearly.

Visualization of microstructure for heavy material can be done even with rather weak pulsed neutron source (1kW).

Summary and Future Prospect

- Neutron detector with Boron coated GEM was constructed.
- Performance study was done with Neutron beam at JAEA.
 - Good position resolution without distortion
 - Good time resolution
- Test experiment at the pulsed neutron sources
 - Two dimensional position and flight time can be obtained simultaneously.
 - Gamma ray can be rejected further using the pulse width (pulse height).
 - Good performance for the energy selective radiography is demonstrated.
- Now, we are testing a new electronics board.
 - 100Mbps \rightarrow 1Gbps Ethernet
 - More channels in one ASIC chip ($8 \rightarrow 32$ channels)
 - 4 ASIC boards + 1 FPGA board
 - \rightarrow One compact board with ASIC chips and FPGA without cables

New readout board

ASIC + FPGA board

Backup

Time resolution at MINE Neutron Resonance Spin Echo Method Modulated Intensity of Zero Effort (MIEZE)

Read points

Li - Scintillator + PMT(R3292)

PNSE: 0.670 ± 0.014 Frequency: $17.060 \pm 0.006 \,\mu$ sec

Black Points

B10-GEM Chamber

PNSE: 0.650 ± 0.007 Frequency : $16.700 \pm 0.004 \,\mu$ sec

Large angle scattering Single NaCl

Sample test

Small angle scattering Hypresica (SiO₂)

Position resolution

TIPP09 Mar. 14 2009 @Tsukuba, Japan

 $\Delta Z/\Delta X$ is obtained by subtracting the one from the adjacent one. 15

Uniformity (Neutron sensitivity, Imaging)

GEM Foil & Test Chamber

Standard GEM Foil without Boron coating

Hole diameter	70µm
Hole pitch	140µm
Thickness	50µm
Cu thickness	5µm

Scienergy Co., Ltd. (Japanese company)

Boron coated GEM Enriched B-10 Purity > 99%

Simulation study

Principle of neutron detection

Neutrons are detected by $n({}^{10}B,\alpha)^7Li \stackrel{|n({}^{10}B,\alpha)^7Li reaction}{reaction}$. (7 -

In order to optimize our detector design, ${}^{^{10}}_{^{5}}B + {}^{^{1}}_{^{0}}n \rightarrow$ we performed a GEANT4-based simulation.

$$\begin{cases} {}_{3}Li + {}_{2}\alpha + 2.792MeV \quad (6) \\ {}_{3}^{7}Li^{*} + {}_{2}^{4}\alpha + 2.310MeV \quad (9)4 \\ {}_{3}^{7}Li^{*} \rightarrow {}_{3}^{7}Li + 0.48MeV \quad (9) \end{cases}$$

The GEANT4-based simulation

- 1.8 Å thermal neutrons shot into the detector at the normal incident.
- An event depositing energy in the gas is defined as a hit.

The neutron sensitivity as a function of ¹⁰B thickness

- The neutron sensitivity reaches its maximum around 3 μ m.
- Over the thickness, charged particles (α or ⁷Li) can't enter into the gas volume.

Approximately 0.1% neutron sensitivity is achieved by a 0.02 μ m ¹⁰B layer.

Signal Shape and Pulse Height Distribution

Number of Neutron counts