

FLEX at HZB – its options – its upgrade

Klaus Habicht

Helmholtz-Zentrum Berlin für Materialien und Energie

The cold-neutron triple axis spectrometer FLEX at the BER II, HZB

- excellently suited for extreme sample environment
- very good signal-to-noise ratio
- continous high demand, vital user community (externally and internally)
- successfull development of novel instrumental methods

The cold TAS FLEX at BER II: scientific profile

Quantum spin-ladder material $(C_5H_{12}N)_2CuBr_4$

Incommensurate high field structure of LiNiPO₄

Square-lattice Heisenberg antiferromagnet Ba₂MnGe₂O₇

T. Matsuda (Yokohama University) et al., PRB 81 100402(R) (2010)

Development of the NRSE method

Klaus Habicht, UCANS II, Indiana University, Bloomington – 7 July 2011

• Neutron Resonance Spin Echo spectroscopy

- Motivation
- Principle of N(R)SE
- Recent Applications
- Resolution
- Future Applications
- The FLEX upgrade project
 - BER-II Conical Beamtube Replacement
 - Future Primary Spectrometer
 - Virtual Source Concept
 - Future Instrument Parameters
- Summary and Outlook

NSE technique allows

decoupling the energy (wavevector) resolution from the incident energy bandwidth (divergence)

SANS with NSE : reflectometry with NSE: diffraction with NSE :
TAS spectroscopy with NSE :

SESANS SERGIS Larmor diffraction high-resolution INS

dispersionless excitations in single crystals : NSE

dispersive excitations in single crystals : NRSE

NRSE spectroscopy gives

momentum-resolved information on lifetime of elementary excitations!

Phonon-phonon interaction: anharmonic lattice dynamics

Electron-phonon interaction:

dynamics in conventional superconductors

<u>Magnon-magnon interaction:</u> antiferromagnetic spin dynamics

Principle of NSE – quasielastic scattering

Principle of NSE – dispersive excitations

tilt the precession fields relative to the incident and scattered neutron beam

Principle of NSE – dispersive excitations

experimentally:

Neutron Resonance Spin-Echo (NRSE) technique provides easily tiltable RF spin flippers effectively realizing precession field regions

(R.Gähler, R.Golub 1987; T.Keller)

NRSE instrument realization: V2/FLEX-NRSE

Momentum-resolved phonon linewidths in BCS superconductors

- phonon linewidths show pronounced peaks at designated wavevectors which also show up as deviations from the linear behaviour of the dispersion: Kohn-anomalies
- superconducting energy gap coincides with these sharp Fermi-surface anomalies for Pb and Nb

P. Aynajian, T. Keller, S.M. Shapiro, K. Habicht, B. Keimer, Science **319**, 1509 (2008)

"Resolution" in NRSE spectroscopy

Resolution function: covariance matrix formulation of the Larmor phase

Klaus Habicht, UCANS II, Indiana University, Bloomington – 7 July 2011

NRSE established for measuring lifetimes of elementary excitations over extended regions in the Brillouin zone

High resolution technique:

- → allows to resolve modes separated in energy otherwise not resolved by standard neutron scattering techniques
- → allows to identify lineshapes deviating from Lorentzian

Klaus Habicht, UCANS II, Indiana University, Bloomington – 7 July 2011

Extended resolution model

covariance matrix formulation of Larmor phase

Tunable double dispersion – Attocube setup

Tunable double dispersion – Larmor diffraction

Tunable double dispersion – inelastic signal

F. Groitl, HZB, V2/FLEX-NRSE

Klaus Habicht, UCANS II, Indiana University, Bloomington - 7 July 2011

Neutron Resonance Spin Echo spectroscopy

- Motivation
- Principle of N(R)SE
- Recent Applications
- Resolution
- Future Applications
- The FLEX upgrade project
 - BER-II Conical Beamtube Replacement
 - Future Primary Spectrometer
 - Virtual Source Concept
 - Future Instrument Parameters
- Summary and Outlook

FLEX upgrade – projects goals

- keep attractive for international user community at HZB!
- keep FLEX as platform for developing innovative instrumentation!
- Significant increase of intensity per unit energy late 2011
- New primary spectrometer in 2011
- Comissioning of Heusler analyzer in 2012
- Conceptional design of secondary spectrometer option in 2012 to be in user operation in 2013

Future cold neutron source

New focussing moderator cell

MCNP optimized parameters:

- cell-core distance
- length of cylinder
- moderator thickness

Reactor shutdown October 2010 Commissioning in 2011

> 50 % increase of flux

New Guide System: Shutter Insert Design

extracting larger beam cross sections and larger divergencies

Current Instrument Floorplan

FLEX primary spectrometer layout

divergent point source: spatial and monochromatic focussing y kl = 1.550 AA⁻¹. (lambdal = 4.054 AA) L_a = 1.750 m L₄ = 1.750 m УB γ_1 $P_1(x_1, y_1)$ δ θΜ 0.5 y [m] 0 $P_M(x_M, y_M)$ Х -0.5 ŶΟ Lo УÂ $P_0(x_0, y_0)$ -1.5 1.5 x [m] 0.5 0 2 2.5 3 crystal tilts define radius of curvature loci of reflection

zero divergence, extended source: spatial and monochromatic focussing

divergent extended source: finite width image with finite monochromaticity

symmetric Rowland geometry must be chosen with state-of-the art double focussing monochromator design!

phase space element at the position of the virtual source which will reach the sample

x 10⁴ x 10⁴ 0.02 0.02 3 2 0.015 0.015 2.5 0.01 0.01 1.5 0.005 0.005 2 y₀ [m] 0 0 1.5 1 -0.005 -0.005 1 -0.01 -0.01 0.5 0.5 -0.015 -0.015 -0.02 L -5 -0.02 0 0 0 5 0 5 horz. divergence γ_0 [deg] horz. divergence γ_0 [deg]

focussed monochromator

Klaus Habicht, UCANS II, Indiana University, Bloomington – 7 July 2011

flat monochromator

effective supermirror m of the accepted phase space element

Optimize virtual source parameters for figure of merit $f_1 = 10^{10} \times I_S + \frac{1}{100} \times \frac{meV}{\Delta E_s}$

incident	k_I	η_M	ρ_{MH}	$I_S \times 10^{10}$	ΔE_s	f_1
divergence	$[Å^{-1}]$	[arcmin]	$[m^{-1}]$	[a.u.]	[meV]	
$5^{8}Ni$	1.00	60	0.42	1.476	0.0109	2.40
m = 3	1.00	56	0.47	3.625	0.0109	4.55
m = 5	1.00	53	0.53	5.765	0.0108	6.69
$5^{8}Ni$	1.55	60	0.26	5.194	0.092	5.30
m = 3	1.55	60	0.33	12.83	0.092	12.9
m = 5	1.55	51	0.34	20.25	0.092	20.4
$5^{58}Ni$	3.70	55	0.08	14.75	1.50	14.8
m = 3	3.70	54	0.13	36.41	1.50	36.4
m = 5	3.70	52	0.16	57.33	1.50	57.3
fixed free			optimized			

FLEX upgrade – progress

user service @ FLEXX: early 2012

Klaus Habicht, UCANS II, Indiana University, Bloomington - 7 July 2011

FLEXX primary spectrometer

M. Skoulatos, K. Habicht, NIM A 647 100 (2011)

Klaus Habicht, UCANS II, Indiana University, Bloomington - 7 July 2011

realisation of a flexible beamline test of components (choppers, polarizers, optics, detectors) test of novel methodology (RRM, TOF-SE encoding, beam modulation)

NRSE-methodology:

- emerging science by enhanced resolution
- needs data reduction and analysis tools (resolution theory)
- future beyond lifetime analysis:

mode separation and line shape analysis

FLEX-upgrade at the BER-II reactor:

- enables excellent research opportunities for the next decade
- puts more emphasis on polarized neutron techniques
- further development of Larmor-labelling and NRSE-methodology

Testbeamline:

- experimental tests of instrument concepts for pulsed sources (ESS)

NRSE / spectroscopy: F. Groitl T. Keller – MPI Stuttgart; FRM-II, Garching P. Aynajian – MPI Stuttgart K. Rolfs

FLEX-upgrade project team at HZB: K. Rule, M. Skoulatos, D. Manh Le M. Rose, H. Bieder B. Urban

Neutron-guide upgrade project team at HZB: T. Krist, A. Rupp R. Ringel, R. Gullasch

Sample environment: K. Kiefer S. Gerischer ESS testbeamline: M. Strobl M. Bulat

Teachers: P. Vorderwisch – HMI Berlin, ANSTO F. Mezei – HMI Berlin, ESS AB R. Golub – HMI Berlin, NCSU, Raleigh R. Gähler – ILL Grenoble T. Keller – MPI Stuttgart; FRM-II, Garching **NRSE-methodology:**

- emerging science by enhanced resolution
- needs data reduction and analysis tools (resolution theory)
- future beyond lifetime analysis:

mode separation and line shape analysis

FLEX-upgrade at the BER-II reactor:

- enables excellent research opportunities for the next decade
- puts more emphasis on polarized neutron techniques
- further development of Larmor-labelling and NRSE-methodology

Testbeamline:

- experimental tests of instrument concepts for pulsed sources (ESS)

Thank you for your attention!