LEgnaro NeutrOn Source

P. F. Mastinu¹, J. Arteche Diaz², A. Baraldo¹, N. Dzysiuk¹, R. Capote Noy⁵, I. Kadenko⁸, G. Martín Hernández², M. Pignatari⁴, J. Praena³, G. Prete¹, S. Sidorkin⁷, and A. Ventura⁶ ¹ Laboratori Nazionali di Legnaro, INFN, Italy. ² CEADEN, La Habana, Cuba. ³Universidad de Sevilla, CNA, Spain. ⁴ Department of Physics, University of Basel, ⁵International Atomic Energy Agency Nuclear Data Section Division of Physical and Chemical Sciences Department of Nuclear Sciences and Applications A-1400 Vienna, Austria ⁶ ENEA- Bologna, Italy, ⁷ NR RAS – Institute for Nuclear Research Russian Academy of Science, Russia , ⁸ International Nuclear Safety Center, KieV- Ukraine

Overview

LENOS:

- > The new method
- Scientific motivations
- > The LENOS project
 - Proton energy shaper
 - Lithium target
- Outlook
- Conclusions

The new method

The method is very versatile: using the degree of freedom of beam type and energy, target material and angle integration, a large variety of desired neutron spectra can be obtained.

We are focused on the simulation of a setup for the production of **Maxwell Boltzmann neutron spectra**(MBNS) at different stellar temperature using the ⁷Li(p,n) reaction near treshold

Scientific motivations: Astrophysics

Nucleosynthesis of elements beyond Fe (B=8.8 MeV/A) are mainly produced in stars by successive neutron captures and β decays. Stellar neutron distribution is Maxwell-Boltzmann. Depending on the stellar site and evolutionary state the most important stellar temperatures are kT=8, 30 and 90keV.

Scientific motivations: Astrophysics

Branching points are unstable (SPES RIB) and can be used to determine the environment inside the stars (density, neutron flux and temperature).

- Short time scale.
- High neutron density: 10^{20} cm⁻³.
- related to explosive scenarios.
 Waiting point

• Required uncertainties for s-process: **3-5**%

P.F. Mastinu-UCANS II- Indiana University, Bloomington- July 5-8 2011

Scientific motivations:

Nuclear data for energy applications

Nuclear data needs

Some actinides for AFC and Gen-IV: Pu-239 fission in 1 keV – 1 MeV Pu-241 fission in 1 keV – 1 MeV U-238 capture in 2 – 200 keV Am-243 capture in fast and thermal energy range Am-241fission in fast energy range *NNDC*

 Large discrepancies between data bases (ENDF, JENDL, JEFF, BRONDL) for many already measured isotopes.
 No measurements for some important isotopes (mainly radioactive)

The LENOS project: simulation procedure

✓ We used SRIM-2008 for energy loss calculations of protons through the energy shaper materials. Results checked with <u>Measurements</u>.

✓ We developed a code (LZYield) based on the NIM B 152 (1999) that generates the differential neutron yield of ⁷Li(p,n).

✓ MCNPX is used for the transport of neutrons with angular and energy yield of LZYield.

P.F. Mastinu-UCANS II- Indiana University, Bloomington- July 5-8 2011

We decided to shape the proton beam by using the energy straggling and stopping power of charged particles when interact with a thin foil of material. General method: **multilayer energy shaper.**

LENOS foil material requirements :

Low atomic number and low density, high melting point, high emissivity, high thermal conductivity, high tensile strength.

→ GRAPHITE foil is a forced choice for LENOS

For lower power we use a monolayer Aluminium foil.

P=2x80 kW for 50mA ANSYS, Inc

The LENOS project: Proton energy Shaper

Graphite disk 70 μ m thickness. Power to be dissipated about 50 kW, Mainly by radiation. Working temperature <2000° C Construction material Al Ergal alloy

Prototype almost completed P.F. Mastinu-UCANS II- Indiana University, Bloomington- July 5-8 2011 EXOLIC Learns for science

In order to dissipate so high specific power (about 3 kW/cm²) a new generation of heat cooling devices have to be implemented and developed.

The target must satisfy some constraints:

Low mass (to avoid neutron backscattering and reduce activation)
 Small thickness, in order to maximize the neutron flux (keeping the measuring sample in touch with the neutron producing surface) and reduce neutron spectra perturbation

Low cost and easy to manufacture procedure, in order to replace the target often even during a measurements

Microchannels + liquid metal cooling medium

P.F. Mastinu-UCANS II- Indiana University, Bloomington- July 5-8 2011

WATER			 GALINSTAN			
parameters	description	value	parameters	description	value	
ср [J/kg K]	fluid specific heat	4181,7	с _Р [J/kg K]	fluid specific heat	365	
λει [W/m K]	fluid thermal conductivity	0,6069	λει [W/m K]	fluid thermal conductivity	36	
λcu [W/m K]	target thermal conductivity	401	λcu [W/m K]	target thermal conductivity	401	
v [Pa s]	fluid viscosity dinamic	0,0008899	v [Pa s]	fluid viscosity dinamic	0,00221	
ρ [kg/m^3]	fluid density	997	ρ [kg/m^3]	fluid density	6363	
d [m]	diameter of the microchannels	0,00055	d [m]	diameter of the microchannels	0,00055	
Pr	Prandtl number	6,131644142	Pr	Prandtl number	0,022406944	
v [m/s]	velocity in the microchannels	15	v [m/s]	velocity in the microchannels	15	
Re	Reynolds number	9242,89246	Re	Reynolds number	23753,28054	
Nu	Nusselt number	73,77145321	Nu	Nusselt number	8,85821701	
α [W/m^2 K]	convection coefficient	81403,44537	α [W/m^2 K]	convection coefficient	579810,5679	
Tav,fl [ºC]	fluid average temperature	23	Tav,fl [ºC]	fluid average temperature	50	
n	number of microchannels	13	n	number of microchannels	13	
q [W/m^2]	beam specific thermal power	4420970,641	q [W/m^2]	beam specific thermal power	19231222,29	
q [W/cm^2]	beam specific thermal power	884,1941283	q [W/cm^2]	beam specific thermal power	3846,244458	
q [W]	beam thermal power on target	1000	q [W/]	beam thermal power on target	4350	
Ts [ºC]		77,30937992	Ts [ºC]		83,16811275	
Tbeam [ºC]	temperature on beam surface	124,6909261	Tbeam [ºC]	temperature on beam surface	117,338302	
Tin [ºC]	fluid inlet temperature	20	Tin [ºC]	fluid inlet temperature	20	
Q [m^3/s]	fluid volumetric flow	4,63287E-05	Q [m^3/s]	fluid volumetric flow	4,63287E-05	
Tus [ºC]	fluid outlet temperature	25,17728529	Tus [ºC]	fluid outlet temperature	60,42821788	
	lithium thickness [m]	0,00004		lithium thickness [m]	0,00004	
Ts(Li) [ºC]		126,7787516	Ts(Li) [ºC]		126,4203432	
λιi [W/m K]	gold thermal conductivity	84,7	λι: [W/m K]	gold thermal conductivity	84,7	

Different GaInSn eutectic alloys are commercially available with different thermophysical propierties TABLE I. Summary of the thermophysical properties of liquid metals used in heat transfer applications and water for comparison. Experiments conducted as part of this study utilized a commercially available $Ga^{41} Ia^{13} Ga^{11} Za^{11}$ alloy. The limited thermophysical property data for this alloy available to the authors includes a melting point of 8 °C and a denity of 6500 kg/m² (Ref. 15).

Len

	Hg^{a}	${ m Ga}^{68}{ m In}^{20}{ m Sn}^{128}$	$\mathrm{Na}^{27}\mathrm{K}^{788}$	SnPbInBi ⁸	Water ²
Density (kg/m ³)	13 564.0 ^c	6363.2 ^e	868.2	9230 ^e	998.0 ⁸
Melting point (°C)	-38.87	10.5	-11	58	0
Heat capacity (J/kg/K)	139.068 ^c	365.813 ^c	982.1 ^e	209*	4181
Kinematic viscosity (10-6 m ² /s)	0.114 8 ^c	0.348 09 ^e	1.05 ^e	4.04 ^e	0.9608
Electrical conductivity (S/µm)	1.044 52 ^c	3.307.37 [¢]	2.878 ^e	1.28 ^e	5.5×10 ⁻¹²
Thermal conductivity (W/m/K)	8.716 95	39 ^d	21.8 ^e	10 ^d	0.6068
Prandtl Number ()f	0.024 8	0.020 8	0.0411	0.7793	6.62

- Calculations shows that ~1-3,5 kW/cm² could be dissipated. T_{Li} <152 °C. Melting point of Lithium is 182°C.
- Li (30 μ m) on a backing of Cu (1.5mm).
- Microchannels, GALINSTAN (gallium, indium e stannum Ga₆₈In₂₁Sn₁₁), alloy at T=15
 °C
 [°]C

P.F. Mastinu-UCANS II- Indiana University, Bloomington- July 5-8 2011

LENOS project: Lithium target ANSYS results

SnInGa alloy cooled

Pressure

INFN

 P^{in} =2.5bar ΔP =2.5 bar

Velocity

µ-channel fluid velocity =5 m/s

Temperature

Li 40 µm Mass flow=55 l/h Inlet fluid temperature=15°C beam Power=1000W Flat beam profile

Melting point Li = 182°C

LENOS project: Lithium target tests

Copper backing has been successfully manufactured at LNL

TIG test: measured power transfer: <u>3.4 kW</u> Not reached the Indium melting point

Preliminary Tests done depositing a thin Indium layer instead of Lithium. Melting point of Indium 157°C. Thermal conductivity of Indium is 81.6 W/(m·K).

Thermal conductivity of Lithium is 84.7 W/($m\cdot K$).

Heat spot

Oxyd-acethilene test: Measured power transfer =1.5 kW Not reached the Indium melting point

Lithium target testing

Target (copper backing) was irradiated by electron beam in 10⁻⁴ mbar Idea of the test is verification of sustainability and reliability of cooling system

I=0-74 A V=60 kV P=ŋV·I =0-4.4 kW

Temperature mapped with thermocamera

Analysis is ongoing...

P.F. Mastinu-UCANS II- Indiana University, Bloomington- July 5-8 2011

May 2011: measured ¹⁸¹ Ta at kT=30 and kT=50 keV.

Outlook

- Experimental validation of the method and the procedures Already approved experiment at IRMM_VdG whithin EUFRAT. Scheduled for February 2012
- In the meanwhile, MACS measurements at existing facilities (LNL and CNA)
 - Measurements of standards
 - Measurement at 30 keV for comparison
 - Measurements at kT up to 50 keV in the same set-up (never measured before)
- MACS of Ta is already measured at _____A at 30 and 50 keV, other are coming

Conclusions

LENOS:

- The LENOS method has to be validated : already approved experiment at \geq **IRMM Feb-12**
- Energy shaper is almost constructed: need to be tested
- \succ Cooper backing for Lithium target is constructed: preliminary tests already done (P_{dissipated} > 3 kW/cm²). Other are ongoing
- There are significant discrepancies between analytical calculations, FEM \geq calculations and preliminary tests. More detailed experimental measurements and calculations are required
- Erosion/corrosion effect to be studied: planned end of the year with water \succ
- \succ Radiation damage effects must be experimentally investigated: suitable facility is needed
- Thermal tests with RF heather (planned after summer at ENEA-Brasimone) \succ
- Liquid metal cooling system: implementation on 2012 \succ

We are open to any collaboration on all aspects of the project 25