

INFN

Istituto Nazionale di Fisica Nucleare

a second generation SOL facility

UCANS-H

Gianfranco Prete LNL-INFN behalf of the SPES Collabora

The Second Meeting of The Union for Compact Accelerator Driven Nettron Sources

> Indiana University, Bloomington July 5-8, 2011

[4]

Istituto Nazionale di Fisica Nucleare

(National Nuclear Physics Institute)

Superconductive RFQ PIAVE HI Injector

Superconductive Linac ALPI 40 MVeq

Tandem XTU 15 MV

SPES project strategy

- 1. Develop a Neutron Rich ISOL facility delivering Radioactive Ion Beams at 10AMeV using the LNL linear accelerator ALPI as re-accelerator.
- 2. Make use of a Direct ISOL Target based on UCx and able to reach 10¹³ Fission/s.
- 3. Develop an applied physics facility based on the technology and the components of the ISOL facility. Applications in neutron production and medicine.

Exotic nuclei

ISOL facility for Neutron rich nuclei by U fission 10¹³ f/s

high purity beam Reacceleration up to >10 MeV/u

Applications

Proton and neutron facility for applied physiscs

> Radioisotope produduction & Medical applications

SPES layout

The SPES Cyclotron: main data

- Accelerated particles: H⁻
- Variable Energy: **35 MeV 70 MeV**
- •Maximum beam current accelerated >700 μA
- Maximum beam current at the exit port 500 μA
- Extraction system:
 - ightarrow Stripper ightarrow H⁻
 - Beam shared on two exit ports
- Performances:
 - ≻exit1: **300µA H**⁻ **40MeV**
 - ➢exit2: 400µA H⁻ 70MeV
 - Dual beam operation
 - Running time > 5000 h/year
 - Minimum Beam Loss to avoid activation (< 5%)</p>

CONTRACT started 28 October 2010 COST: 10,5Meuro (IVA included)

Actual status: executive project evaluated on June 2011. Construction started. DELIVERY 3-4 years (shedule to be fixed according to building)

SPES CYCLOTRON

load work per year

2 weeks per shift

Beam preparation 2 days Beam on target 12 days

Beam on target \rightarrow 280 hours per shift

Each bunker will cool down for 14 days after target irradiation.

Expected Beam on target: 10600 hours per year

Over 5000 hours/year of proton beam available for applications

Beam sharing

	Proton beam	N.rs of SHIFTS	Beam on target: Total 10600 hours
ISOL 1	300μA 40MeV	10	2800
Irradiation 1	500 μA 70MeV	9	2500
Irradiation 2	500 μA 70MeV	10	2800
ISOL 2	300 μA 40MeV	9	2500
Maintanance		7	7x14x24= 2350
Cyclotron Operation		19	19x12x24= 5462 esperiment 19X2x24= 912 beam preparation

SPES ISOL facility at LNL

A second generation ISOL facility for neutron-rich ion beams and an interdisciplinary research center

ISOL Roadmap in EUROPE

SPES target: operation principle

Fission efficiency \rightarrow 100p per 1.5 FF ~ 200 $\mu A \rightarrow 10^{13}$ fissions/sec Beam power = 40 MeV p x 200 μ A = 8 KW

1.3 mm thick each (~30gr of UCx) Power density in UCx = 200W/gr

© 3 graphite DUMP

(slowing down protons with low fission cross section and high power density)

Thermal test performed at HRIBF-ORNL

Carbide developments

Temperature Furnaces

di Fisica Nucleare Ultra High

INFN

<u>Carbides production and</u> <u>characterization</u>

- 1) Carburization and sintering of
- carbides2) Carburization and sintering of
- UC_x
 Off-line tests on materials (UHT behaviour)
- 4) Development of measurement systems i.e. thermal conductivity and emissivity

UCx with nanotubes. Next experiment at HRIBF October 2011

LabView software controlling the heating/cooling schedule

SPES Target On-line Test experiment at HRIBF

Eur. Phys. J. A (2011) 47: 32 DOI: 10.1140/epja/i2011-11032-5 Neutron-rich isotope production using the uranium carbide multi-foil SPES target prototype For **expected beam on target**, data are scaled to: 200 microA proton current 2-5% transport efficiency

The SPES Ion Sources

Next laser test at LNL with excimer

Selective Aluminum ionization with a single wavelength

20 Hz ; 12 mJ per pulse 20 Hz ; 20 mJ per pulse

Preliminary results

WP03: Ionization measurements

Front end running since June '10

Spettri di neutroni prodotti dal fascio di protoni a 70 MeV su diversi bersagli "spessi"

Neutron facility at the SPES Cyclotron

Integral neutron production at SPES Cyclotron Proton beam= 70 MeV, 500 μA

Target = W 5mm

0			
Energy	Sn	$\Phi_{\sf n}$ @ 2.5 m	$\Phi_{\sf n}$ @ 1 cm
region (MeV)	(n/s)	(n cm ⁻² s ⁻¹)	(n cm ⁻² s ⁻¹)
	$\sim 6.10^{14} \text{ s}^{-1}$		
1 < E < 10	$\sim 5.10^{14} \text{ s}^{-1}$	5×10 ⁸	3×10 ¹³
10 < E < 50	$\sim 1.10^{14} \text{ s}^{-1}$	1×10 ⁸	6x10 ¹²

LIFAN: Single Event Effect and DIRECT proton irradiation facility

FARETRA: Moderated neutron facility with Neutron spectra similar to Gen IV reactors

Research Accelerator Driven System: fast neutrons subcritic system based on LEU and lead moderator. 200kW. Proposal under discussion.

Union for Compact Accelerator-based

Second Meeting: Indiana University, Bloomington July 5-8, 2011

FARETRA

FAst REactor simulator for TRAnsmutation studies

dies

Proposal: making use of the SPES cyclotron proton beam (40-70 MeV) on a (Be,W o Pb) neutron converter and of a proper neutron spectrum shifter system , produce a GenIV-like fast neutron spectrum to start cross sections integral measurements on actinides fission fragments and structural materials.

1 µgr 238 Pu (87 y, 0.6 MBq) $\sigma(n,f) \sim 1$ b Expected Transmutation Rate = 20 c/s

Preliminary modeling of FARETRA facility

Neutron spectrum inside irradiation chamber MCNPX calculation results (Preliminary)

Accelerator-driven Systems (ADS) and Fast Reactors (FR) in Advanced Nuclear Fuel Cycles: A comparative study NEA-OEDC, 2002

Integral neutron flux: $\Phi_n = \sim 1.0 \cdot 10^{10} \text{ cm}^{-2} \text{ s}^{-1}$

See details on J.Esposito POSTER 13

The Legnaro Intense FAst Neutron Facility

The LIFAN PROJECT

The White Spectrum Neutron Source

<u>Our method</u>: the desired neutron spectra is composed by adding neutron spectra coming from different target materials

• rotating Pb/Be *thin* production target: no moderator needed

conclusions

- The SPES project is in the construction phase.
 Commissioning is expected for 2015.
- The proton driver accelerator allows to operate two targets at the same time
- Both the ISOL facility and an application facility can run in parallel
- SPES project will offer the possibility to develop an accelerator based neutron facility at LNL
- UCANS is the right reference community
- > We hope to become an "operative" partner soon.