

Species	proton			
Beam Power	16	kW MeV		
Dutput Energy	13			
Ion Source Extraction Energy	50	keV		
RFQ Output Energy	3	MeV		
DTL Output Energy	13	MeV mA		
Average Current	1.25			
Peak Current	50	mA		
Duration of Pulse	500	μs		
Particle per Pulse	1.56×10 ¹⁴	Protons		
Repeat. Frequency	50	Hz		
Beam Duty Factor	2.5	%		
RF Frequency	325	MHz		

Progr	ess of RFQ LINA								
Collaborating with experts	Parameters	Value	Unit						
group from the US on	Туре	Four-vane							
physical design	Frequency	325	MHz						
Collaborating with	Input beam energy	50	keV						
Shanghai Kelin Co. Ltd. on	Output beam energy	3.0	MeV						
machining	Peak beam current	50	mA						
Ready for field tuning with	Emittance (norm. rms)	0.2	π mm mrad						
US experts group by the	Maximum surface field	32.1	MV/m						
	Pulse length	0.5	ms						
Plan to finish machining by the end of SER 2011	Pulse repetition rate	50	Hz						
the end of SEP 2011	RF peak power	537	kW						
0.00 000 000	Beam duty factor	2.5	%						
	296.87cm								
CPAIS			18						

International Collaboration on Neutron Detector Developing

e Detector Collaboration Agreement - April 2010

 Joined the collaboration of Developing Alternative Techniques to ³He based Neutron Detectors for Neutron Scattering Applications, April 2010

Collaboration Agreement concerning the Development of Alternative Techniques to ³He based Neutron Detectors for Neutron Scattering Applications

Over the last years 'He has been heavily used in gas filled detectors for neutron scattering due to its outstanding characteristics. It is also used in other applications, such as cryogenics and medical imagining, which are completely dependent on 'He as there are no possible alternative technologies available today. Taking into account the available information, the undersigned partners (Annex 1) have come to the conclusion that demand for 'He will exceed supply by a significant factor over the coming years and the cost may become prohibitive. In view of this they have agreed as a matter of priority to collaborate on a programme for the development of possible alternatives to 'He detectors for neutron scattering applications. This document lays out the guidelines for the collaboration.

asic principles

	CPHS is on track to fulfill its preset goals													
	Sub system	2011			2012			2013						
	Sub-system	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
	ECR IS & LEBT		Apr 2011, get 50keV proton in TUB						В					
	RFQ Linac													
	RF system													
	НЕВТ					Dec	2011,	purch	ase &	machi	ning			
	Vacuum System		of 3MeV system				/stem a	are accomplished						
	TMR													
	Imaging Station							Mar-J	un - J	un 201	12,			
	3MeV Installation	Illation & Conditioning					get 3MeV proton & neutron							
	DTL							Jun	2012,	purch	ase & I	machir	ning	
	SANS							of D	TL&S	ANS a	re acc	omplis	hed	
	13MeV Installation	on & Conditioning						Dec 2012, get				get		
	Construction		Apr 2	2011,	constr	uction	is rea	dy		13Me	V proto	on & ne	eutron	
C	GP45 34													

THU - Scientific Facility for Advanced Quantum Probes						
Compact Pulsed Hadron Source, CPHS (Proton/Neutron) +						
Tsinghua Thomson-scatte	ring X-rav source. TTX	(Electron / X-ray)				
	Wavelength	800nm				
	Pulse Energy	500mJ				
	Pulse Duration	30fs				
	Focal Spot Radius	~0.031mm				
	Electron Beam					
	Energy	30~45 MeV				
	Bunch Duration	1ps				
	Charge/Microbunch	0.7nC				
	Energy Spread	0.33%				
	Beam Radius	0.03mm*0.025mm				
	X-ray Pulse					
	Photon Energy	24(90°)~48(180°)keV				
	Pulse Duration	160(90°)~1000(180°)fs				
	Number of Photons (phase I)	8.4×10 ⁶ (90°)~5.5×10 ⁷ (180°)				
	Number of Photons (phase II)	~10 ⁴ ppp~2×10 ⁷ pps=~10 ¹¹ pps				

